skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A comparison of adenosine triphosphate with other metrics of microbial biomass in a gradient from the North Atlantic to the Chesapeake Bay
A new, simplified protocol for determining particulate adenosine triphosphate (ATP) levels allows for the assessment of microbial biomass distribution in aquatic systems at a high temporal and spatial resolution. A comparison of ATP data with related variables, such as particulate carbon, nitrogen, chlorophyll, and turbidity in pelagic samples, yielded significant and strong correlations in a gradient from the tributaries of the Chesapeake Bay (sigma-t = 8) to the open North Atlantic (sigma-t = 29). Correlations varied between ATP and biomass depending on the microscopic method employed. Despite the much greater effort involved, biomass determined by microscopy correlated poorly with other indicator variables including carbon, nitrogen, and chlorophyll. The ATP values presented here fit well within the range of ATP biomass estimates in the literature for similar environments. A compilation of prior research data from a wide range of marine habitats demonstrated that ATP values can be ranked according to broad trophic gradients, from the deep sea to eutrophic inland waters. Using a mass-based conversion factor of 250, the contribution of biomass to overall particulate organic carbon (POC) ranged from 15% to 30% along the gradient, from the open ocean to locations in the Chesapeake Bay respectively. Our data corroborate the notion that ATP, due to its consistency and simplicity, is a promising high-throughput indicator of cytoplasm volume with distinct benefits over cell counts and measures of chlorophyll or POC.  more » « less
Award ID(s):
1851368 2319114
PAR ID:
10504305
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Frontiers in Marine Science
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
11
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We assessed the distribution of biota (autotrophs and heterotrophs) and associated carbonate chemistry variables in Arctic sea ice at latitudes >82°N during late summer and early autumn 2018. The sampled sea ice was relatively thick (average 1.4 m) with variable snow cover (mean 7 cm) and low bulk salinities throughout. Most measured variables, including carbonate chemistry parameters, were low in the upper half of the ice cores, but increased with depth. Measurements of particulate organic carbon (POC), chlorophyll a (chl a) , bacterial abundance, and particulate extracellular polysaccharide (pEPS) in the cores strongly suggested that detrital carbon was the major particulate organic pool. Near the ice-water interface, autotrophic material comprised ca. 50% of the total POC, whereas pEPS and bacterial carbon accounted for ca. 8 and 1% of the total POC, respectively. Under-ice water was nutrient poor, providing only a small input of nutrients to support autotrophic growth, at least during the time of our sampling. While the Arctic Ocean has substantial interannual variability in sea-ice concentration and thickness, these measurements enrich the available database and suggest that during years when autumn sea ice is >1 m thick, sea-ice biota are limited in activity and biomass. 
    more » « less
  2. Abstract The use of adenosine triphosphate (ATP) as a universal biomass indicator is built on the premise that ATP concentration tracks biomass rather than the physiological condition of cells. However, reportedly high variability in ATP in response to environmental conditions is the main reason the method has not found widespread application. To test possible sources of this variability, we used the diatomThalassiosira weissflogiias a model and manipulated its growth rate through nutrient limitation and through exposure to three different temperatures (15°C, 20°C, and 25°C). We simplified the ATP protocol with hot‐water or chemical extraction methods, modified a commercially available luciferin‐luciferase assay, and employed single‐photon counting in a scintillation counter, all of which increased sensitivity and throughput. Per‐cell ATP levels remained relatively constant despite changes in growth rates by approximately 10‐fold in the batch culture (i.e., nutrient limitation) experiments, and approximately 2‐fold in response to temperature. The re‐examination of related literature values revealed that average cellular ATP levels differed little among taxonomic groups of aquatic microbes, even at the domain level, and correlated well with bulk properties such as elemental carbon or nitrogen. Fulfilling multiple cellular functions in addition to being the universal energy currency requires ATP to be maintained in a millimolar concentration range. Consequently, ATP relates directly to live cytoplasm volume, while elemental carbon and nitrogen are constrained by an indeterminate pool of detrital material and intracellular storage compounds. The ATP‐biomass indicator is sensitive, economical, and can be readily standardized among laboratories and across environments. 
    more » « less
  3. Rates of ecosystem metabolic properties, such as plankton community respiration, can be used as an assessment of the eutrophication state of a waterbody and are the primary biogeochemical rates causing oxygen depletion in coastal waters. However, given the additional labor involved in measuring biogeochemical rate processes, few monitoring programs regularly measure these properties and thus few long-term monitoring records of plankton respiration exist. An eight-year, biweekly plankton community respiration rate time series was analyzed as part of a monitoring program situated in the lower Patuxent River estuary, a tributary of Chesapeake Bay. We found that particulate nutrients (nitrogen and phosphorus) were the most highly correlated co-variates with respiration rate. Additionally, statistical and kinetic models including variables both water temperature and particulate nitrogen were able to explain 74% of the variability in respiration. Over the long-term record, both particulate nutrients and respiration rate were elevated when measured at higher tides. Separate measurements of respiration rate during ten consecutive days and during high and low tide on three separate days also support the enhancement of respiration with high tide. The enhancement was likely due to the import of particulate nutrients from the highly productive mid-bay region. This analysis of the longest consistently measured community respiration rate dataset in Chesapeake Bay has implications for how to interpret long-term records of measurements made at fixed locations in estuaries. 
    more » « less
  4. null (Ed.)
    Abstract. We present a newly developed upper-thermocline, open-ocean biogeochemical flux model that is complex and flexible enough to capture open-ocean ecosystem dynamics but reduced enough to incorporate into highly resolved numerical simulations and parameter optimization studies with limited additional computational cost. The model, which is derived from the full 56-state-variable Biogeochemical Flux Model (BFM56; Vichi et al., 2007), follows a biological and chemical functional group approach and allows for the development of critical non-Redfield nutrient ratios. Matter is expressed in units of carbon, nitrogen, and phosphate, following techniques used in more complex models. To reduce the overall computational cost and to focus on upper-thermocline, open-ocean, and non-iron-limited or non-silicate-limited conditions, the reduced model eliminates certain processes, such as benthic, silicate, and iron influences, and parameterizes others, such as the bacterial loop. The model explicitly tracks 17 state variables, divided into phytoplankton, zooplankton, dissolved organic matter, particulate organic matter, and nutrient groups. It is correspondingly called the Biogeochemical Flux Model 17 (BFM17). After describing BFM17, we couple it with the one-dimensional Princeton Ocean Model for validation using observational data from the Sargasso Sea. The results agree closely with observational data, giving correlations above 0.85, except for chlorophyll (0.63) and oxygen (0.37), as well as with corresponding results from BFM56, with correlations above 0.85, except for oxygen (0.56), including the ability to capture the subsurface chlorophyll maximum and bloom intensity. In comparison to previous models of similar size, BFM17 provides improved correlations between several model output fields and observational data, indicating that reproduction of in situ data can be achieved with a low number of variables, while maintaining the functional group approach. Notable additions to BFM17 over similar complexity models are the explicit tracking of dissolved oxygen, allowance for non-Redfield nutrient ratios, and both dissolved and particulate organic matter, all within the functional group framework. 
    more » « less
  5. Abstract Two oceanographic cruises were completed in September 2016 and August 2017 to investigate the distribution of particulate organic matter (POM) across the northeast Chukchi Shelf. Both periods were characterized by highly stratified conditions, with major contrasts in the distribution of regional water masses that impacted POM distributions. Overall, surface waters were characterized by low chlorophyll fluorescence (Chl Fl < 0.8 mg m−3) and particle beam attenuation (cp < 0.3 m−1) values, and low concentrations of particulate organic carbon (POC < 8 mmol m−3), chlorophyll and pheophytin (Chl + Pheo < 0.8 mg m−3), and suspended particulate matter (SPM ∼2 g m−3). Elevated Chl Fl and Chl + Pheo (∼2 mg m−3) values measured at mid‐depths below the pycnocline defined the subsurface chlorophyll maxima (SCM), which exhibited moderate POC (∼10 mmol m−3),cp(∼0.4 m−1) and SPM (∼3 g m−3). In contrast, deeper waters below the pycnocline were characterized by low Chl Fl and Chl + Pheo (∼0.7 mg m−3), highcp(>1.5 m−1) and SPM (>8 g m−3) and elevated POC (>10 mmol m−3). POM compositions from surface and SCM regions of the water column were consistent with contributions from active phytoplankton sources whereas samples from bottom waters were characterized by high Pheo/(Chl + Pheo) ratios (>0.4) indicative of altered phytoplankton detritus. Marked contrasts in POM were observed in both surface and middepth waters during both cruises. Increases in chlorophyll and POC consistent with enhanced productivity were measured in middepth waters during the September 2016 cruise following a period of downwelling‐favorable winds, and in surface waters during the August 2017 cruise following a period of upwelling‐favorable winds. 
    more » « less