skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Comparative life history patterns of female gorillas
Abstract ObjectivesSeveral theories have been proposed to explain the impact of ecological conditions on differences in life history variables within and between species. Here we compare female life history parameters of one western lowland gorilla population(Gorilla gorilla gorilla) and two mountain gorilla populations(Gorilla beringei beringei). Materials and MethodsWe compared the age of natal dispersal, age of first birth, interbirth interval, and birth rates using long‐term demographic datasets from Mbeli Bai (western gorillas), Bwindi Impenetrable National Park and the Virunga Massif (mountain gorillas). ResultsThe Mbeli western gorillas had the latest age at first birth, longest interbirth interval, and slowest surviving birth rate compared to the Virunga mountain gorillas. Bwindi mountain gorillas were intermediate in their life history patterns. DiscussionThese patterns are consistent with differences in feeding ecology across sites. However, it is not possible to determine the evolutionary mechanisms responsible for these differences, whether a consequence of genetic adaptation to fluctuating food supplies (“ecological risk aversion hypothesis”) or phenotypic plasticity in response to the abundance of food (“energy balance hypothesis”). Our results do not seem consistent with the extrinsic mortality risks at each site, but current conditions for mountain gorillas are unlikely to match their evolutionary history. Not all traits fell along the expected fast‐slow continuum, which illustrates that they can vary independently from each other (“modularity model”). Thus, the life history traits of each gorilla population may reflect a complex interplay of multiple ecological influences that are operating through both genetic adaptations and phenotypic plasticity.  more » « less
Award ID(s):
1753651
PAR ID:
10504914
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley Periodicals LLC
Date Published:
Journal Name:
American Journal of Biological Anthropology
Volume:
181
Issue:
4
ISSN:
2692-7691
Page Range / eLocation ID:
564 to 574
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mountain gorillas are particularly inbred compared to other gorillas and even the most inbred human populations. As mountain gorilla skeletal material accumulated during the 1970s, researchers noted their pronounced facial asymmetry and hypothesized that it reflects a population-wide chewing side preference. However, asymmetry has also been linked to environmental and genetic stress in experimental models. Here, we examine facial asymmetry in 114 crania from three Gorilla subspecies using 3D geometric morphometrics. We measure fluctuating asymmetry (FA), defined as random deviations from perfect symmetry, and population-specific patterns of directional asymmetry (DA). Mountain gorillas, with a current population size of about 1000 individuals, have the highest degree of facial FA (explaining 17% of total facial shape variation), followed by Grauer gorillas (9%) and western lowland gorillas (6%), despite the latter experiencing the greatest ecological and dietary variability. DA, while significant in all three taxa, explains relatively less shape variation than FA does. Facial asymmetry correlates neither with tooth wear asymmetry nor increases with age in a mountain gorilla subsample, undermining the hypothesis that facial asymmetry is driven by chewing side preference. An examination of temporal trends shows that stress-induced developmental instability has increased over the last 100 years in these endangered apes. 
    more » « less
  2. null (Ed.)
    Primates, especially great apes, have slow life histories and long lifespans compared to other mammalian groups. Data pertaining to life history variables can be difficult to collect in the wild considering that species can have longer lifespans than the duration of a field site’s existence. Here, we examine life history variables for captive-born great apes housed in the United States. Using studbook data, we investigate stillbirth rates, age at first birth (AFB), interbirth intervals, number of offspring, twinning rates, mean lifespan and maximum lifespans. Analyses presented here exclude individuals with estimated birthdates. The oldest maximum lifespan was recorded for gorillas (60.07yrs (female); n= 656) followed by chimpanzees (57.40yrs (female); n= 559), orangutans (54.88yrs (female); n= 660), and bonobos (52.15yrs (female); n= 144). Excluding individuals living ≤10 years of age, mean lifespan is similar for all great apes in captivity (F(3,417)= 0.849, p= 0.467; bonobos: 23.5 ± 9.8yrs; chimpanzees: 25.2 ± 10.6yrs; gorillas: 26.2 ± 10.2yrs; orangutans: 24.2 ± 10.0yrs). The stillbirth rate is highest in chimpanzees (0.147; n=559) then gorillas (0.144; n=658), bonobos (0.125; n=144), and orangutans (0.010; n=681). Gorillas (11.4 ± 3.7yrs) have a younger AFB, on average, than chimpanzees (15.9 ± 6.9yrs), bonobos (14.3 ± 6.9yrs), or orangutans (14.4 ± 5.1yrs) (F(3,377)= 13.97, p< 0.0001). We discuss how our findings are influenced by changes in husbandry practices as well as the captive environment. By examining the life histories of captive populations, we highlight the plasticity these species exhibit in relation to the timing of developmental and reproductive events. 
    more » « less
  3. Abstract Phenotypic variation is common along environmental gradients, but it is often not known to what extent it results from genetic differentiation between populations or phenotypic plasticity. We studied populations of a livebearing fish that have colonized streams rich in toxic hydrogen sulphide (H2S). There is strong phenotypic differentiation between adjacent sulphidic and non-sulphidic populations. In this study, we varied food availability to pregnant mothers from different populations to induce maternal effects, a form of plasticity, and repeatedly measured life-history and behavioural traits throughout the ontogeny of the offspring. Genetic differentiation affected most of the traits we measured, in that sulphidic offspring tended to be born larger, mature later, have lower burst swimming performance, be more exploratory, and feed less effectively. In contrast, maternal effects impacted few traits and at a smaller magnitude, although offspring from poorly provisioned mothers tended to be born larger and be more exploratory. Population differences and maternal effects (when both were present) acted additively, and there was no evidence for population differences in plasticity. Overall, our study suggests that phenotypic divergence between these populations in nature is caused primarily by genetic differentiation and that plasticity mediated by maternal effects accentuates but does not cause differences between populations. 
    more » « less
  4. Vertebrate life histories evolve in response to selection imposed by abiotic and biotic environmental conditions while being limited by genetic, developmental, physiological, demographic and phylogenetic processes that constrain adaptation. Despite the well-recognized shifts in selective pressures accompanying transitions among environments, the conditions driving innovation and the consequences for life-history evolution remain outstanding questions. Here we compare the traits of vertebrates that occupy aquatic or terrestrial environments as juveniles to infer shifts in evolutionary constraints that explain differences in their life-history traits and thus their fundamental demographic rates. Our results emphasize the reduced potential for life-history diversification on land, especially that of reproductive strategies, which limits the scope of viable life-history strategies. Moreover, our study reveals differences between the evolution of viviparity in aquatic and terrestrial realms. Transitions from egg laying to live birth represent a major shift across life-history space for aquatic organisms, whereas terrestrial egg-laying organisms evolve live birth without drastic changes in life-history strategy. Whilst trade-offs in the allocation of resources place fundamental constraints on the way life histories can vary, ecological setting influences the position of species within the viable phenotypic space available for adaptive evolution. 
    more » « less
  5. Illegal activities pose challenges to the conservation of mountain gorillas (Gorilla beringei beringei) across the Virunga Landscape (VL). This paper investigates the relationship between household livelihood security (HLS) and the perceived prevalence of illegal activities across the VL. Results from a survey of 223 residents of areas adjacent to the VL in Uganda and Rwanda reveal varied links between human livelihoods and illegal activities threatening wildlife. For example, while poaching appears to be negatively associated with health and financial security among residents, it is positively associated with education security, indicating that education may be contributing to illegal activities threatening wildlife. Food security constraints were also found to be significantly associated with poaching. Finally, findings suggest that although HLS investments are essential in improving local community livelihoods, only food and financial security are the most effective means of reducing illegal activities in Virunga. 
    more » « less