The prevalence of inadequate SARS-COV-2 (COVID-19) responses may indicate a lack of trust in forecasts and risk communication. However, no work has empirically tested how multiple forecast visualization choices impact trust and task-based performance. The three studies presented in this paper (N=1299) examine how visualization choices impact trust in COVID-19 mortality forecasts and how they influence performance in a trend prediction task. These studies focus on line charts populated with real-time COVID-19 data that varied the number and color encoding of the forecasts and the presence of best/worst-case forecasts. The studies reveal that trust in COVID-19 forecast visualizations initially increases with the number of forecasts and then plateaus after 6–9 forecasts. However, participants were most trusting of visualizations that showed less visual information, including a 95% confidence interval, single forecast, and grayscale encoded forecasts. Participants maintained high trust in intervals labeled with 50% and 25% and did not proportionally scale their trust to the indicated interval size. Despite the high trust, the 95% CI condition was the most likely to evoke predictions that did not correspond with the actual COVID-19 trend. Qualitative analysis of participants' strategies confirmed that many participants trusted both the simplistic visualizations and those with numerous forecasts. This work provides practical guides for how COVID-19 forecast visualizations influence trust, including recommendations for identifying the range where forecasts balance trade-offs between trust and task-based performance. 
                        more » 
                        « less   
                    
                            
                            Swaying the Public? Impacts of Election Forecast Visualizations on Emotion, Trust, and Intention in the 2022 U.S. Midterms
                        
                    
    
            We conducted a longitudinal study during the 2022 U.S. midterm elections, investigating the real-world impacts of uncertainty visualizations. Using our forecast model of the governor elections in 33 states, we created a website and deployed four uncertainty visualizations for the election forecasts: single quantile dotplot (1-Dotplot), dual quantile dotplots (2-Dotplot), dual histogram intervals (2-Interval), and Plinko quantile dotplot (Plinko), an animated design with a physical and probabilistic analogy. Our online experiment ran from Oct. 18, 2022, to Nov. 23, 2022, involving 1,327 participants from 15 states. We use Bayesian multilevel modeling and post-stratification to produce demographically-representative estimates of people's emotions, trust in forecasts, and political participation intention. We find that election forecast visualizations can heighten emotions, increase trust, and slightly affect people's intentions to participate in elections. 2-Interval shows the strongest effects across all measures; 1-Dotplot increases trust the most after elections. Both visualizations create emotional and trust gaps between different partisan identities, especially when a Republican candidate is predicted to win. Our qualitative analysis uncovers the complex political and social contexts of election forecast visualizations, showcasing that visualizations may provoke polarization. This intriguing interplay between visualization types, partisanship, and trust exemplifies the fundamental challenge of disentangling visualization from its context, underscoring a need for deeper investigation into the real-world impacts of visualizations. Our preprint and supplements are available at https://doi.org/osf.io/ajq8f . 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10504918
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Visualization and Computer Graphics
- Volume:
- 30
- Issue:
- 1
- ISSN:
- 1077-2626
- Page Range / eLocation ID:
- 23 - 33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Presidential elections can be forecast using information from political and economic conditions, polls, and a statistical model of changes in public opinion over time. However, these “knowns” about how to make a good presidential election forecast come with many unknowns due to the challenges of evaluating forecast calibration and communication. We highlight how incentives may shape forecasts, and particularly forecast uncertainty, in light of calibration challenges. We illustrate these challenges in creating, communicating, and evaluating election predictions, using the Economist and Fivethirtyeight forecasts of the 2020 election as examples, and offer recommendations for forecasters and scholars.more » « less
- 
            Han, Sung Min (Ed.)The U.S. public’s confidence in elections is intensively studied in the last decade but little is known about election confidence among locally elected officials, whose roles and community status may influence public opinion. Using a nationally representative survey of local election officials, we compare election confidence among local elected officials with that of the general public. Local elected officials are more likely to trust both local and national elections. We theorize factors that affect local officials’ trust in elections, including partisan context, state leadership election denial levels, and political ambition. We show how social trust, partisan identity, and ambition significantly influence local officials’ confidence that local and national results reflect the intention of voters. We conclude by showing how the relative lack of intensive partisan polarization among local elected officials is especially important at keeping election distrust low among local officials.more » « less
- 
            Because of increased variability in populations, communities, and ecosystems due to land use and climate change, there is a pressing need to know the future state of ecological systems across space and time. Ecological forecasting is an emerging approach which provides an estimate of the future state of an ecological system with uncertainty, allowing society to preemptively prepare for fluctuations in important ecosystem services. However, forecasts must be effectively designed and communicated to those who need them to make decisions in order to realize their potential for protecting natural resources. In this module, students will explore real ecological forecast visualizations, identify ways to represent uncertainty, make management decisions using forecast visualizations, and learn decision support techniques. Lastly, students customize a forecast visualization for a specific stakeholder's decision needs. The overarching goal of this module is for students to understand how forecasts are connected to decision-making of stakeholders, or the managers, policy-makers, and other members of society who use forecasts to inform decision-making. The A-B-C structure of this module makes it flexible and adaptable to a range of student levels and course structures. This EDI data package contains instructional materials and the files necessary to teach the module. Readers are referred to the Zenodo data package (Woelmer et al. 2022; DOI: 10.5281/zenodo.7074674) for the R Shiny application code needed to run the module locally.more » « less
- 
            The prevalence and spread of online misinformation during the 2020 US presidential election served to perpetuate a false belief in widespread election fraud. Though much research has focused on how social media platforms connected people to election-related rumors and conspiracy theories, less is known about the search engine pathways that linked users to news content with the potential to undermine trust in elections. In this paper, we present novel data related to the content of political headlines during the 2020 US election period. We scraped over 800,000 headlines from Google's search engine results pages (SERP) in response to 20 election-related keywords—10 general (e.g., "Ballots") and 10 conspiratorial (e.g., "Voter fraud")—when searched from 20 cities across 16 states. We present results from qualitative coding of 5,600 headlines focused on the prevalence of delegitimizing information. Our results reveal that videos (as compared to stories, search results, and advertisements) are the most problematic in terms of exposing users to delegitimizing headlines. We also illustrate how headline content varies when searching from a swing state, adopting a conspiratorial search keyword, or reading from media domains with higher political bias. We conclude with policy recommendations on data transparency that allow researchers to continue to monitor search engines during elections.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    