Deep model-based architectures (DMBAs) are widely used in imaging inverse problems to integrate physical measurement models and learned image priors. Plug-and-play priors (PnP) and deep equilibrium models (DEQ) are two DMBA frameworks that have received significant attention. The key difference between the two is that the image prior in DEQ is trained by using a specific measurement model, while that in PnP is trained as a general image denoiser. This difference is behind a common assumption that PnP is more robust to changes in the measurement models compared to DEQ. This paper investigates the robustness of DEQ priors to changes in the measurement models. Our results on two imaging inverse problems suggest that DEQ priors trained under mismatched measurement models outperform image denoisers.
more »
« less
This content will become publicly available on June 7, 2025
Plug-and-Play Posterior Sampling under Mismatched Measurement and Prior Models
Posterior sampling has been shown to be a powerful Bayesian approach for solving imaging inverse problems. The recent plug-and-play unadjusted Langevin algorithm (PnP-ULA) has emerged as a promising method for Monte Carlo sampling and minimum mean squared error (MMSE) estimation by combining physical measurement models with deep-learning priors specified using image denoisers. However, the intricate relationship between the sampling distribution of PnP-ULA and the mismatched data-fidelity and denoiser has not been theoretically analyzed. We address this gap by proposing a posterior-L2 pseudometric and using it to quantify an explicit error bound for PnP-ULA under mismatched posterior distribution. We numerically validate our theory on several inverse problems such as sampling from Gaussian mixture models and image deblurring. Our results suggest that the sensitivity of the sampling distribution of PnP-ULA to a mismatch in the measurement model and the denoiser can be precisely characterized.
more »
« less
- Award ID(s):
- 2043134
- NSF-PAR ID:
- 10504936
- Publisher / Repository:
- International Conference on Learning Representations (ICLR)
- Date Published:
- Format(s):
- Medium: X
- Location:
- Vienna, Austria
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Plug-and-play (PnP) prior is a well-known class of methods for solving imaging inverse problems by computing fixed-points of operators combining physical measurement models and learned image denoisers. While PnP methods have been extensively used for image recovery with known measurement operators, there is little work on PnP for solving blind inverse problems. We address this gap by presenting a new block-coordinate PnP (BC-PnP) method that efficiently solves this joint estimation problem by introducing learned denoisers as priors on both the unknown image and the unknown measurement operator. We present a new convergence theory for BC-PnP compatible with blind inverse problems by considering nonconvex data-fidelity terms and expansive denoisers. Our theory analyzes the convergence of BC-PnP to a stationary point of an implicit function associated with an approximate minimum mean-squared error (MMSE) denoiser. We numerically validate our method on two blind inverse problems: automatic coil sensitivity estimation in magnetic resonance imaging (MRI) and blind image deblurring. Our results show that BC-PnP provides an efficient and principled framework for using denoisers as PnP priors for jointly estimating measurement operators and images.more » « less
-
Plug-and-Play Alternating Direction Method of Multipliers (PnP-ADMM) is a widely-used algorithm for solving inverse problems by integrating physical measurement models and convolutional neural network (CNN) priors. PnP-ADMM has been theoretically proven to converge for convex data-fidelity terms and nonexpansive CNNs. It has however been observed that PnP-ADMM often empirically converges even for expansive CNNs. This paper presents a theoretical explanation for the observed stability of PnP-ADMM based on the interpretation of the CNN prior as a minimum mean-squared error (MMSE) denoiser. Our explanation parallels a similar argument recently made for the iterative shrinkage/thresholding algorithm variant of PnP (PnP-ISTA) and relies on the connection between MMSE denoisers and proximal operators. We also numerically evaluate the performance gap between PnP-ADMM using a nonexpan-sive DnCNN denoiser and expansive DRUNet denoiser, thus motivating the use of expansive CNNs.more » « less
-
Plug-and-Play (PnP) methods are efficient iterative algorithms for solving ill-posed image inverse problems. PnP methods are obtained by using deep Gaussian denoisers instead of the proximal operator or the gradient-descent step within proximal algorithms. Current PnP schemes rely on data-fidelity terms that have either Lipschitz gradients or closed-form proximal operators, which is not applicable to Poisson inverse problems. Based on the observation that the Gaussian noise is not the adequate noise model in this setting, we propose to generalize PnP using the Bregman Proximal Gradient (BPG) method. BPG replaces the Euclidean distance with a Bregman divergence that can better capture the smoothness properties of the problem. We introduce the Bregman Score Denoiser specifically parametrized and trained for the new Bregman geometry and prove that it corresponds to the proximal operator of a nonconvex potential. We propose two PnP algorithms based on the Bregman Score Denoiser for solving Poisson inverse problems. Extending the convergence results of BPG in the nonconvex settings, we show that the proposed methods converge, targeting stationary points of an explicit global functional. Experimental evaluations conducted on various Poisson inverse problems validate the convergence results and showcase effective restoration performance.more » « less
-
Plug-and-Play Priors (PnP) and Regularization by Denoising (RED) are widely- used frameworks for solving imaging inverse problems by computing fixed-points of operators combining physical measurement models and learned image priors. While traditional PnP/RED formulations have focused on priors specified using image denoisers, there is a growing interest in learning PnP/RED priors that are end-to-end optimal. The recent Deep Equilibrium Models (DEQ) framework has enabled memory-efficient end-to-end learning of PnP/RED priors by implicitly differentiating through the fixed-point equations without storing intermediate activation values. However, the dependence of the computational/memory complexity of the measurement models in PnP/RED on the total number of measurements leaves DEQ impractical for many imaging applications. We propose ODER as a new strategy for improving the efficiency of DEQ through stochastic approximations of the measurement models. We theoretically analyze ODER giving insights into its ability to approximate the traditional DEQ approach for solving inverse problems. Our numerical results suggest the potential improvements in training/testing complexity due to ODER on three distinct imaging applications.more » « less