Abstract We construct new families ofdirectserendipity anddirectmixed finite elements on general planar, strictly convex polygons that areH1andH(div) conforming, respectively, and possess optimal order of accuracy for any order. They have a minimal number of degrees of freedom subject to the conformity and accuracy constraints. The name arises because the shape functions are defineddirectlyon the physical elements, i.e., without using a mapping from a reference element. The finite element shape functions are defined to be the full spaces of scalar or vector polynomials plus a space of supplemental functions. The direct serendipity elements are the precursors of the direct mixed elements in a de Rham complex. The convergence properties of the finite elements are shown under a regularity assumption on the shapes of the polygons in the mesh, as well as some mild restrictions on the choices one can make in the construction of the supplemental functions. Numerical experiments on various meshes exhibit the performance of these new families of finite elements.
more »
« less
A Tangential and Penalty-Free Finite Element Method for the Surface Stokes Problem
Surface Stokes and Navier–Stokes equations are used to model fluid flow on surfaces. They have attracted significant recent attention in the numerical analysis literature because approximation of their solutions poses significant challenges not encountered in the Euclidean context. One challenge comes from the need to simultaneously enforce tangentiality and $H^1$ conformity (continuity) of discrete vector fields used to approximate solutions in the velocity-pressure formulation. Existing methods in the literature all enforce one of these two constraints weakly either by penalization or by use of Lagrange multipliers. Missing so far is a robust and systematic construction of surface Stokes finite element spaces which employ nodal degrees of freedom, including MINI, Taylor–Hood, Scott–Vogelius, and other composite elements which can lead to divergence-conforming or pressure-robust discretizations. In this paper we construct surface MINI spaces whose velocity fields are tangential. They are not $H^1$-conforming, but do lie in $H(div)$ and do not require penalization to achieve optimal convergence rates. We prove stability and optimal-order energy-norm convergence of the method and demonstrate optimal-order convergence of the velocity field in $$L_2$$ via numerical experiments. The core advance in the paper is the construction of nodal degrees of freedom for the velocity field. This technique also may be used to construct surface counterparts to many other standard Euclidean Stokes spaces, and we accordingly present numerical experiments indicating optimal-order convergence of nonconforming tangential surface Taylor–Hood elements.
more »
« less
- PAR ID:
- 10504964
- Publisher / Repository:
- SIAM
- Date Published:
- Journal Name:
- SIAM Journal on Numerical Analysis
- Volume:
- 62
- Issue:
- 1
- ISSN:
- 0036-1429
- Page Range / eLocation ID:
- 248 to 272
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A unified construction of H(div)-conforming finite element tensors, including vector element, symmetric matrix element, traceless matrix element, and, in general, tensors with linear constraints, is developed in this work. It is based on the geometric decomposition of Lagrange elements into bubble functions on each sub-simplex. Each tensor at a sub-simplex is further decomposed into tangential and normal components. The tangential component forms the bubble function space, while the normal component characterizes the trace. Some degrees of freedom can be redistributed to (n-1)-dimensional faces. The developed finite element spaces are H(div)-conforming and satisfy the discrete inf-sup condition. Intrinsic bases of the constraint tensor space are also established.more » « less
-
Abstract Finite element methods developed for unfitted meshes have been widely applied to various interface problems. However, many of them resort to non-conforming spaces for approximation, which is a critical obstacle for the extension to $$\textbf{H}(\text{curl})$$ equations. This essential issue stems from the underlying Sobolev space $$\textbf{H}^s(\text{curl};\,\Omega)$$ , and even the widely used penalty methodology may not yield the optimal convergence rate. One promising approach to circumvent this issue is to use a conforming test function space, which motivates us to develop a Petrov–Galerkin immersed finite element (PG-IFE) method for $$\textbf{H}(\text{curl})$$ -elliptic interface problems. We establish the Nédélec-type IFE spaces and develop some important properties including their edge degrees of freedom, an exact sequence relating to the $H^1$ IFE space and optimal approximation capabilities. We analyse the inf-sup condition under certain assumptions and show the optimal convergence rate, which is also validated by numerical experiments.more » « less
-
We construct direct serendipity finite elements on general cuboidal hexahedra, which are 𝐻1-conforming and optimally approximate to any order. The new finite elements are direct in that the shape functions are directly defined on the physical element. Moreover, they are serendipity by possessing a minimal number of degrees of freedom satisfying the conformity requirement. Their shape function spaces consist of polynomials plus (generally nonpolynomial) supplemental functions, where the polynomials are included for the approximation property and supplements are added to achieve 𝐻1 -conformity. The finite elements are fully constructive. The shape function spaces of higher order 𝑟 ≥ 3 are developed first, and then the lower order spaces are constructed as subspaces of the third order space. Under a shape regularity assumption, and a mild restriction on the choice of supplemental functions, we develop the convergence properties of the new direct serendipity finite elements. Numerical results with different choices of supplements are compared on two mesh sequences, one regularly distorted and the other one randomly distorted. They all possess a convergence rate that aligns with the theory, while a slight difference lies in their performance.more » « less
-
We construct direct serendipity finite elements on general cuboidal hexahedra, which are H1-conforming and optimally approximate to any order. The new finite elements are direct in that the shape functions are directly defined on the physical element. Moreover, they are serendipity by possessing a minimal number of degrees of freedom satisfying the conformity requirement. Their shape function spaces consist of polynomials plus (generally nonpolynomial) supplemental functions, where the polynomials are included for the approximation property and supplements are added to achieve H1-conformity. The finite elements are fully constructive. The shape function spaces of higher order 𝑟 ≥ 3 are developed first, and then the lower order spaces are constructed as subspaces of the third order space. Under a shape regularity assumption, and a mild restriction on the choice of supplemental functions, we develop the convergence properties of the new direct serendipity finite elements. Numerical results with different choices of supplements are compared on two mesh sequences, one regularly distorted and the other one randomly distorted. They all possess a convergence rate that aligns with the theory, while a slight difference lies in their performance.more » « less
An official website of the United States government

