Organisations disclose their privacy practices by posting privacy policies on their websites. Even though internet users often care about their digital privacy, they usually do not read privacy policies, since understanding them requires a significant investment of time and effort. Natural language processing has been used to create experimental tools to interpret privacy policies, but there has been a lack of large privacy policy corpora to facilitate the creation of large-scale semi-supervised and unsupervised models to interpret and simplify privacy policies. Thus, we present the PrivaSeer Corpus of 1,005,380 English language website privacy policies collected from the web. The number of unique websites represented in PrivaSeer is about ten times larger than the next largest public collection of web privacy policies, and it surpasses the aggregate of unique websites represented in all other publicly available privacy policy corpora combined. We describe a corpus creation pipeline with stages that include a web crawler, language detection, document classification, duplicate and near-duplicate removal, and content extraction. We employ an unsupervised topic modelling approach to investigate the contents of policy documents in the corpus and discuss the distribution of topics in privacy policies at web scale. We further investigate the relationship between privacy policy domain PageRanks and text features of the privacy policies. Finally, we use the corpus to pretrain PrivBERT, a transformer-based privacy policy language model, and obtain state of the art results on the data practice classification and question answering tasks.
more »
« less
Privacy Lost and Found: An Investigation at Scale of Web Privacy Policy Availability
Legal jurisdictions around the world require organisations to post privacy policies on their websites. However, in spite of laws such as GDPR and CCPA reinforcing this requirement, organisations sometimes do not comply, and a variety of semi-compliant failure modes exist. To investigate the landscape of web privacy policies, we crawl the privacy policies from 7 million organisation websites with the goal of identifying when policies are unavailable. We conduct a large-scale investigation of the availability of privacy policies and identify potential reasons for unavailability such as dead links, documents with empty content, documents that consist solely of placeholder text, and documents unavailable in the specific languages offered by their respective websites. We estimate the frequencies of these failure modes and the overall unavailability of privacy policies on the web and find that privacy policies URLs are only available in 34% of websites. Further, 1.37% of these URLs are broken links and 1.23% of the valid links lead to pages without a policy. Further, to enable investigation of privacy policies at scale, we use the capture-recapture technique to estimate the total number of English language privacy policies on the web and the distribution of these documents across top level domains and sectors of commerce. We estimate the lower bound on the number of English language privacy policies to be around 3 million. Finally, we release the CoLIPPs Corpus containing around 600k policies and their metadata consisting of policy URL, length, readability, sector of commerce, and policy crawl date.
more »
« less
- Award ID(s):
- 1914444
- PAR ID:
- 10505057
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- DocEng '23: Proceedings of the ACM Symposium on Document Engineering 2023
- ISBN:
- 9798400700279
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Location:
- Limerick, Ireland
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Terms of service documents are a common feature of organizations' websites. Although there is no blanket requirement for organizations to provide these documents, their provision often serves essential legal purposes. Users of a website are expected to agree with the contents of a terms of service document, but users tend to ignore these documents as they are often lengthy and difficult to comprehend. As a step towards understanding the landscape of these documents at a large scale, we present a first-of-its-kind terms of service corpus containing 247,212 English language terms of service documents obtained from company websites sampled from Free Company Dataset. We examine the URLs and contents of the documents and find that some websites that purport to post terms of service actually do not provide them. We analyze reasons for unavailability and determine the overall availability of terms of service in a given set of website domains. We also identify that some websites provide an agreement that combines terms of service with a privacy policy, which is often an obligatory separate document. Using topic modeling, we analyze the themes in these combined documents by comparing them with themes found in separate terms of service and privacy policies. Results suggest that such single-page agreements miss some of the most prevalent topics available in typical privacy policies and terms of service documents and that many disproportionately cover privacy policy topics as compared to terms of service topics.more » « less
-
The General Data Protection Regulation (GDPR) and other recent privacy laws require organizations to post their privacy policies, and place specific expectations on organisations' privacy practices. Privacy policies take the form of documents written in natural language, and one of the expectations placed upon them is that they remain up to date. To investigate legal compliance with this recency requirement at a large scale, we create a novel pipeline that includes crawling, regex-based extraction, candidate date classification and date object creation to extract updated and effective dates from privacy policies written in English. We then analyze patterns in policy dates using four web crawls and find that only about 40% of privacy policies online contain a date, thereby making it difficult to assess their regulatory compliance. We also find that updates in privacy policies are temporally concentrated around passage of laws regulating digital privacy (such as the GDPR), and that more popular domains are more likely to have policy dates as well as more likely to update their policies regularly.more » « less
-
Web forms are one of the primary ways to collect personal information online, yet they are relatively under-studied. Unlike web tracking, data collection through web forms is explicit and contextualized. Users (i) are asked to input specific personal information types, and (ii) know the specific context (i.e., on which website and for what purpose). For web forms to be trusted by users, they must meet the common sense standards of appropriate data collection practices within a particular context (i.e., privacy norms). In this paper, we extract the privacy norms embedded within web forms through a measurement study. First, we build a specialized crawler to discover web forms on websites. We run it on 11,500 popular websites, and we create a dataset of 293K web forms. Second, to process data of this scale, we develop a cost-efficient way to annotate web forms with form types and personal information types, using text classifiers trained with assistance of large language models (LLMs). Third, by analyzing the annotated dataset, we reveal common patterns of data collection practices. We find that (i) these patterns are explained by functional necessities and legal obligations, thus reflecting privacy norms, and that (ii) deviations from the observed norms often signal unnecessary data collection. In addition, we analyze the privacy policies that accompany web forms. We show that, despite their wide adoption and use, there is a disconnect between privacy policy disclosures and the observed privacy norms.more » « less
-
Companies' privacy policies and their contents are being analyzed for many reasons, including to assess the readability, usability, and utility of privacy policies; to extract and analyze data practices of apps and websites; to assess compliance of companies with relevant laws and their own privacy policies, and to develop tools and machine learning models to summarize and read policies. Despite the importance and interest in studying privacy policies from researchers, regulators, and privacy activists, few best practices or approaches have emerged and infrastructure and tool support is scarce or scattered. In order to provide insight into how researchers study privacy policies and the challenges they face when doing so, we conducted 26 interviews with researchers from various disciplines who have conducted research on privacy policies. We provide insights on a range of challenges around policy selection, policy retrieval, and policy content analysis, as well as multiple overarching challenges researchers experienced across the research process. Based on our findings, we discuss opportunities to better facilitate privacy policy research, including research directions for methodologically advancing privacy policy analysis, potential structural changes around privacy policies, and avenues for fostering an interdisciplinary research community and maturing the field.more » « less
An official website of the United States government

