skip to main content

Search for: All records

Award ID contains: 1914444

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. “Notice and choice” is the predominant approach for data privacy protection today. There is considerable user-centered research on providing effective privacy notices but not enough guidance on designing privacy choices. Recent data privacy regulations worldwide established new requirements for privacy choices, but system practitioners struggle to implement legally compliant privacy choices that also provide users meaningful privacy control. We construct a design space for privacy choices based on a user-centered analysis of how people exercise privacy choices in real-world systems. This work contributes a conceptual framework that considers privacy choice as a user-centered process as well as a taxonomy formore »practitioners to design meaningful privacy choices in their systems. We also present a use case of how we leverage the design space to finalize the design decisions for a real-world privacy choice platform, the Internet of Things (IoT) Assistant, to provide meaningful privacy control in the IoT.« less
  2. Increasingly, icons are being proposed to concisely convey privacy-related information and choices to users. However, complex privacy concepts can be difficult to communicate. We investigate which icons effectively signal the presence of privacy choices. In a series of user studies, we designed and evaluated icons and accompanying textual descriptions (link texts) conveying choice, opting-out, and sale of personal information — the latter an opt-out mandated by the California Consumer Privacy Act (CCPA). We identified icon-link text pairings that conveyed the presence of privacy choices without creating misconceptions, with a blue stylized toggle icon paired with “Privacy Options” performing best. Themore »two CCPA-mandated link texts (“Do Not Sell My Personal Information” and “Do Not Sell My Info”) accurately communicated the presence of do-not-sell opt-outs with most icons. Our results provide insights for the design of privacy choice indicators and highlight the necessity of incorporating user testing into policy making.« less
  3. The European Union’s General Data Protection Regulation (GDPR) has compelled businesses and other organizations to update their privacy policies to state specific information about their data practices. Simultaneously, researchers in natural language processing (NLP) have developed corpora and annotation schemes for extracting salient information from privacy policies, often independently of specific laws. To connect existing NLP research on privacy policies with the GDPR, we introduce a mapping from GDPR provisions to the OPP-115 annotation scheme, which serves as the basis for a growing number of projects to automatically classify privacy policy text. We show that assumptions made in the annotationmore »scheme about the essential topics for a privacy policy reflect many of the same topics that the GDPR requires in these documents. This suggests that OPP-115 continues to be representative of the anatomy of a legally compliant privacy policy, and that the legal assumptions behind it represent the elements of data processing that ought to be disclosed within a policy for transparency. The correspondences we show between OPP-115 and the GDPR suggest the feasibility of bridging existing computational and legal research on privacy policies, benefiting both areas.« less