skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recovery of the Nonlinearity From the Modified Scattering Map
Abstract We consider a class of one-dimensional nonlinear Schrödinger equations of the form $$ \begin{align*} & (i\partial_{t}+\Delta)u = [1+a]|u|^{2} u. \end{align*}$$For suitable localized functions $$a$$, such equations admit a small-data modified scattering theory, which incorporates the standard logarithmic phase correction. In this work, we prove that the small-data modified scattering behavior uniquely determines the inhomogeneity $$a$$.  more » « less
Award ID(s):
2137217
PAR ID:
10505102
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2024
Issue:
8
ISSN:
1073-7928
Page Range / eLocation ID:
6632 to 6655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove that the small-data scattering map uniquely determines the nonlinearity for a wide class of gauge-invariant, intercritical nonlinear Schrödinger equations. We use the Born approximation to reduce the analysis to a deconvolution problem involving the distribution function for linear Schrödinger solutions. We then solve this deconvolution problem using the Beurling–Lax Theorem. 
    more » « less
  2. Modified scattering phenomena are encountered in the study of global properties for nonlinear dispersive partial differential equations in situations where the decay of solutions at infinity is borderline and scattering fails just barely. An interesting example is that of problems with cubic nonlinearities in one space dimension. The method of testing by wave packets was introduced by the authors as a tool to efficiently capture the asymptotic equations associated to such flows, and thus establish the modified scattering mechanism in a simpler, more efficient fashion, and at lower regularity. In these expository notes we describe how this method can be applied to problems with general dispersion relations. 
    more » « less
  3. Abstract We prove small data modified scattering for the Vlasov–Poisson system in dimension $d=3$, using a method inspired from dispersive analysis. In particular, we identify a simple asymptotic dynamics related to the scattering mass. 
    more » « less
  4. null (Ed.)
    Abstract: We construct (modified) scattering operators for the Vlasov–Poisson system in three dimensions, mapping small asymptotic dynamics as t→ - ∞ to asymptotic dynamics as t → + ∞. The main novelty is the construction of modified wave operators, but we also obtain a new simple proof of modified scattering. Our analysis is guided by the Hamiltonian structure of the Vlasov–Poisson system. Via a pseudo-conformal inversion, we recast the question of asymptotic behavior in terms of local in time dynamics of a new equation with singular coefficients which is approximately integrated using a generating function. 
    more » « less
  5. null (Ed.)
    Abstract We study the scattering problem for the nonlinear Schrödinger equation $$i\partial _t u + \Delta u = |u|^p u$$ on $$\mathbb{R}^d$$, $$d\geq 1$$, with a mass-subcritical nonlinearity above the Strauss exponent. For this equation, it is known that asymptotic completeness in $L^2$ with initial data in $$\Sigma$$ holds and the wave operator is well defined on $$\Sigma$$. We show that there exists $$0<\beta <p$$ such that the wave operator and the data-to-scattering-state map do not admit extensions to maps $$L^2\to L^2$$ of class $$C^{1+\beta }$$ near the origin. This constitutes a mild form of ill-posedness for the scattering problem in the $L^2$ topology. 
    more » « less