skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Testing by wave packets and modified scattering in nonlinear dispersive pde’s
Modified scattering phenomena are encountered in the study of global properties for nonlinear dispersive partial differential equations in situations where the decay of solutions at infinity is borderline and scattering fails just barely. An interesting example is that of problems with cubic nonlinearities in one space dimension. The method of testing by wave packets was introduced by the authors as a tool to efficiently capture the asymptotic equations associated to such flows, and thus establish the modified scattering mechanism in a simpler, more efficient fashion, and at lower regularity. In these expository notes we describe how this method can be applied to problems with general dispersion relations.  more » « less
Award ID(s):
2054975 1928930 1845037
PAR ID:
10502246
Author(s) / Creator(s):
;
Publisher / Repository:
Transactions of the American Mathematical Society, Series B
Date Published:
Journal Name:
Transactions of the American Mathematical Society, Series B
Volume:
11
Issue:
6
ISSN:
2330-0000
Page Range / eLocation ID:
164 to 214
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Consider the elastic scattering of a time-harmonic wave by multiple well-separated rigid particles with smooth boundaries in two dimensions. Instead of using the complex Green's tensor of the elastic wave equation, we utilize the Helmholtz decomposition to convert the boundary value problem of the elastic wave equation into a coupled boundary value problem of the Helmholtz equation. Based on single, double, and combined layer potentials with the simpler Green's function of the Helmholtz equation, we present three different boundary integral equations for the coupled boundary value problem. The well-posedness of the new integral equations is established. Computationally, a scattering matrix based method is proposed to evaluate the elastic wave for arbitrarily shaped particles. The method uses the local expansion for the incident wave and the multipole expansion for the scattered wave. The linear system of algebraic equations is solved by GMRES with fast multipole method (FMM) acceleration. Numerical results show that the method is fast and highly accurate for solving elastic scattering problems with multiple particles. 
    more » « less
  2. Abstract The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of the associated linear scattering problem. In anomalous diffusion, the mean squared displacement is proportional to t α , α > 0, while in anomalous dispersion, the speed of localized waves is proportional to A α , where A is the amplitude of the wave. Fractional extensions of the modified Korteweg–deVries (mKdV), sine-Gordon (sineG) and sinh-Gordon (sinhG) and associated hierarchies are obtained. Using symmetries present in the linear scattering problem, these equations can be connected with a scalar family of nonlinear evolution equations of which fractional mKdV (fmKdV), fractional sineG (fsineG), and fractional sinhG (fsinhG) are special cases. Completeness of solutions to the scalar problem is obtained and, from this, the nonlinear evolution equation is characterized in terms of a spectral expansion. In particular, fmKdV, fsineG, and fsinhG are explicitly written. One-soliton solutions are derived for fmKdV and fsineG using the inverse scattering transform and these solitons are shown to exhibit anomalous dispersion. 
    more » « less
  3. Partial differential equations (PDEs) with spatially varying coefficients arise throughout science and engineering, modeling rich heterogeneous material behavior. Yet conventional PDE solvers struggle with the immense complexity found in nature, since they must first discretize the problem---leading to spatial aliasing, and global meshing/sampling that is costly and error-prone. We describe a method that approximates neither the domain geometry, the problem data, nor the solution space, providing the exact solution (in expectation) even for problems with extremely detailed geometry and intricate coefficients. Our main contribution is to extend thewalk on spheres (WoS)algorithm from constant- to variable-coefficient problems, by drawing on techniques from volumetric rendering. In particular, an approach inspired bynull-scatteringyields unbiased Monte Carlo estimators for a large class of 2nd order elliptic PDEs, which share many attractive features with Monte Carlo rendering: no meshing, trivial parallelism, and the ability to evaluate the solution at any point without solving a global system of equations. 
    more » « less
  4. Abstract We consider a class of one-dimensional nonlinear Schrödinger equations of the form $$ \begin{align*} & (i\partial_{t}+\Delta)u = [1+a]|u|^{2} u. \end{align*}$$For suitable localized functions $$a$$, such equations admit a small-data modified scattering theory, which incorporates the standard logarithmic phase correction. In this work, we prove that the small-data modified scattering behavior uniquely determines the inhomogeneity $$a$$. 
    more » « less
  5. The Hall Magnetohydrodynamic (MHD) equations are an extension of the standard MHD equations that include the “Hall” term from the general Ohm’s law. The Hall term decouples ion and electron motion physically on the ion inertial length scales. Implementing the Hall MHD equations in a numerical solver allows more physical simulations for plasma dynamics on length scales less than the ion inertial scale length but greater than the electron inertial length. The present effort is an important step towards producing physically correct results to important problems, such as the Geospace Environmental Modeling (GEM) Magnetic Reconnection problem. The solver that is being modified is currently capable of solving the resistive MHD equations on unstructured grids using the spectral difference scheme which is an arbitrarily high-order method that is relatively simple to parallelize. The GEM Magnetic Reconnection problem is used to evaluate whether the Hall MHD equations have been correctly implemented in the solver using the spectral difference method with divergence cleaning (SDDC) algorithm by comparing against the reconnection rates reported in the literature. 
    more » « less