The SUMup database is a compilation of surface mass balance (SMB), subsurface temperature and density measurements from the Greenland and Antarctic ice sheets. This 2023 release contains 4 490 442 data points: 1 778 540 SMB measurements, 2 706 413 density measurements and 5 489 subsurface temperature measurements. This is respectively 1 477 132, 420 825 and 4 715 additional observations of SMB, density and temperature compared to the 2022 release. This new release provides not only snow accumulation on ice sheets, like its predecessors, but all types of SMB measurements, including from ablation areas. On the other hand, snow depth on sea ice is discontinued, but can still be found in the previous releases. The data files are provided in both CSV and NetCDF format and contain, for each measurement, the following metadata: latitude, longitude, elevation, timestamp, method, reference of the data source and, when applicable, the name of the measurement group it belongs to (core name for SMB, profile name for density, station name for temperature). Data users are encouraged to cite all the original data sources that are being used. Issues about this release as well as suggestions of datasets to be added in next releases can be done on a dedicated user forum: https://github.com/SUMup-database/SUMup-data-suggestion/issues. Example scripts to use the SUMup 2023 files are made available on our script repository: https://github.com/SUMup-database/SUMup-example-scripts.
more »
« less
Electric field and conductivity measurements in the stratosphere
This dataset is a compressed archive that includes 2 data files in binary format, 4 files in csv format, and 2 metadata files (pdf documents) that provide information on how to interpret the data. This data was collected from instruments deployed on two stratospheric balloons, launched a day apart in late June 2021 from central Oregon. They flew on upper level winds to the west, out over the northeastern Pacific Ocean. The measurement objective was a multi-day set of vertical electric field and polar conductivity measurements at roughly a 10 minute cadence, and from widely separated locations in the stratosphere. The binary format data is comprehensive, including everything that was measured. The csv files have been processed from the raw data files into calibrated, timed, and time-ordered ASCII files containing the primary science measurements and some essential auxiliary measurements such as measurement location and time. This data was collected in an effort to (1) compare the fair-weather return current density at different geographic locations and (2) to compare the fair-weather current density with global thunderstorm activity.
more »
« less
- Award ID(s):
- 1723086
- PAR ID:
- 10505111
- Publisher / Repository:
- Dryad
- Date Published:
- Subject(s) / Keyword(s):
- FOS: Earth and related environmental sciences global electric circuit balloon measurements Stratosphere conductivity Electric field
- Format(s):
- Medium: X Size: 6562383 bytes
- Size(s):
- 6562383 bytes
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The geochemistry and strontium isotope data for Coal Creek Watershed, Colorado, consists of cation, anion, and 87Sr/87Sr isotope values from samples collected at 8 stream location along Coal Creek, samples from two groundwater springs within the watershed, and a shallow subsurface piezometer. All stream and spring samples were collected between June and October, 2021, and the shallow, near stream piezometer sample was collected in July of 2022. These data were collected to evaluate how groundwater contributions to Coal Creek originating from shallow vs deep flow paths respond seasonal drying. Understanding of groundwater-surface water interactions in montane systems in critical for the future of water availability in the Western US as groundwater contributions are expected to become more important for sustaining summer stream flows. This data package contains: (1) a csv of all cation samples; (2) a csv of all anion samples; (3) a csv of all 87Sr/87Sr isotope samples; and (4) a csv of locations for each sampling site. The dataset additionally includes a file-level metadata (flmd.csv) file that lists each file contained in the dataset with associated metadata; and a data dictionary (dd.csv) file that contains column/row headers used throughout the files along with a definition, units, and data type.more » « less
-
We used spatial data from previously mapped preferential groundwater discharges throughout the Farmington River watershed in Connecticut and Massachusetts (https://doi.org/10.5066/P915E8JY) to guide water sample collection at known locations of groundwater discharging to surface water. In 2017 and 2019 - 2021, samples were collected during general river baseflow conditions (July ? November, less than 30.9 cms mean daily discharge (USGS gage 01189995, statistics 2010-2022) when the riverbank discharge points were exposed. We collected a suite of dissolved constituents and stable isotopes of water directly in the shallow saturated sediments of active points of discharge, and coincident stream chemical samples were also collected adjacent to locations of groundwater discharge. Data collected includes nutrients (NO3, NH4, Cl, SO4, PO4, dissolved organic carbon (DOC), and total nitrogen (TN)), greenhouse gases (CO2, CH4, and N2O), dissolved gases (N2, dissolved oxygen (DO)), conductivity, sediment characteristics, temperature, and spatial information. This dataset includes 2 main files: 1) Farmington_Chemistry_2017_2021.csv contains attribute information for each biogeochemical constituent collected at preferential groundwater discharges along the Farmington River network. 2)Farmington_Temporal_Cl_Rn_Iso_2020.csv contain attribute information for source characteristic data (Chloride, Radon, Isotope) collected at locations of repeat sampling at 5 groundwater seep faces along the Farmington River (Alsop and Rainbow Island).more » « less
-
In December 2021, we installed four groundwater monitoring wells in Imperial Beach, California, to study the effects of sea level variability and implications for flood risks. We collected time series of groundwater table elevation (GWT) relative to a fixed vertical datum and local land surface elevation from 8 December 2021 through 14 May 2024. In each groundwater monitoring well, a single unvented pressure sensor (RBR Solo) was attached to Kevlar line and submerged ~1 m below the GWT. From 8 December 2021 through 21 November 2023, total pressure was recorded at 1 Hz; from 22 November 2023 through 14 May 2024, sampling occurred at 0.1 Hz. Gaps in sampling are a result of battery failures leading to data loss. To estimate hydrostatic pressure from total pressure measurements we subtracted atmospheric pressure measurements that were collected every 6 min from NOAA's National Data Buoy Center (NDBC) station SDBC1-9410170 at the San Diego airport and linearly interpolated to match sensor samples. Hydrostatic pressure is converted to sensor depth below the water table. We determined an average well water density, ρ, using intermittent vertical profiles of conductivity-temperature-depth (CTD) and the TEOS-10 conversion (Roquet et al. 2015). This object includes MATLAB (.mat) and HDF5 (.h5) files that contain the raw total pressure measurements from unvented RBR solos. The original Ruskin files (.rsk) are not included and have been converted to MATLAB files without loss of fidelity. Intermittent CTD profiles used to estimate well water density structure are included as CSV files. GWT that have been processed using atmospheric pressure and vertical datum measurements are included as HDF5 files. The object has five main directories, one for each of the four groundwater wells and one for data downloaded from other sources for archival and reproducibility purposes. Code for generating these files may be found on the GitHub repository (https://github.com/aubarnes/ImperialBeachGroundwater) or on Zenodo (https://doi.org/10.5281/zenodo.14969632). Code run with Python v3.12.7 Pastas v1.5.0 UTide v0.3.0 GSW v3.6.19 NumPy v1.26.4 Pandas v2.1.4 MatPlotLib v3.9.2 SciPy v 1.13.1 requests v2.32.3 intake v0.7.0 datetime pickle osmore » « less
-
The radon isotope and stable water isotope data for Coal Creek Watershed, Colorado, consists of d2H, d18O, and 222Rn values from samples collected at 8 stream location along Coal Creek, samples from 7 groundwater springs within the watershed, and precipitation isotope samples collected by Next Generation Water Observing System (NGWOS) from a collector within the watershed. All stream and spring samples were collected between June and October, 2021, and precipitation isotope samples were collected between November 2020 and September 2021. These data were collected to evaluate how groundwater contributions to Coal Creek originating from a fractured hillslope and alluvial fan respond to summer monsoon rains and seasonal drying. Understanding of groundwater-surface water interactions in montane systems in critical for the future of water availability in the Western US as groundwater contributions are expected to become more important for sustaining summer stream flows. This data package contains: (1) a csv of all radon samples; (2) a csv of all stream and spring isotope samples; (3) a csv of precipitation isotope samples; and (4) a csv of locations for each sampling site. The dataset additionally includes a file-level metadata (flmd.csv) file that lists each file contained in the dataset with associated metadata; and a data dictionary (dd.csv) file that contains column/row headers used throughout the files along with a definition, units, and data type.more » « less
An official website of the United States government
