skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data from: Flooding Projections due to Groundwater Emergence Caused by Sea Level Variability
In December 2021, we installed four groundwater monitoring wells in Imperial Beach, California, to study the effects of sea level variability and implications for flood risks. We collected time series of groundwater table elevation (GWT) relative to a fixed vertical datum and local land surface elevation from 8 December 2021 through 14 May 2024. In each groundwater monitoring well, a single unvented pressure sensor (RBR Solo) was attached to Kevlar line and submerged ~1 m below the GWT. From 8 December 2021 through 21 November 2023, total pressure was recorded at 1 Hz; from 22 November 2023 through 14 May 2024, sampling occurred at 0.1 Hz. Gaps in sampling are a result of battery failures leading to data loss. To estimate hydrostatic pressure from total pressure measurements we subtracted atmospheric pressure measurements that were collected every 6 min from NOAA's National Data Buoy Center (NDBC) station SDBC1-9410170 at the San Diego airport and linearly interpolated to match sensor samples. Hydrostatic pressure is converted to sensor depth below the water table. We determined an average well water density, ρ, using intermittent vertical profiles of conductivity-temperature-depth (CTD) and the TEOS-10 conversion (Roquet et al. 2015). This object includes MATLAB (.mat) and HDF5 (.h5) files that contain the raw total pressure measurements from unvented RBR solos. The original Ruskin files (.rsk) are not included and have been converted to MATLAB files without loss of fidelity. Intermittent CTD profiles used to estimate well water density structure are included as CSV files. GWT that have been processed using atmospheric pressure and vertical datum measurements are included as HDF5 files. The object has five main directories, one for each of the four groundwater wells and one for data downloaded from other sources for archival and reproducibility purposes. Code for generating these files may be found on the GitHub repository (https://github.com/aubarnes/ImperialBeachGroundwater) or on Zenodo (https://doi.org/10.5281/zenodo.14969632). Code run with Python v3.12.7 Pastas v1.5.0 UTide v0.3.0 GSW v3.6.19 NumPy v1.26.4 Pandas v2.1.4 MatPlotLib v3.9.2 SciPy v 1.13.1 requests v2.32.3 intake v0.7.0 datetime pickle os  more » « less
Award ID(s):
2113984
PAR ID:
10638587
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
UC San Diego Library Digital Collections
Date Published:
Subject(s) / Keyword(s):
Empirical groundwater modeling Infrastructure groundwater vulnerability Coastal aquifer dynamics Domain: Earth sciences Groundwater table elevation (GWT) Groundwater-driven flooding Compound flood hazards Transmissive coastal soils Imperial Beach (Calif.) Oceanography FOS: Earth and related environmental sciences
Format(s):
Medium: X Other: text/plain; application/zip; application/zip; application/zip; application/zip; application/zip
Sponsoring Org:
National Science Foundation
More Like this
  1. This data set consists of 3,244 gridded, daily averaged temperature, practical salinity, potential density, and dissolved oxygen profiles. These profiles were collected from October 2014 to May 2025 by the NSF Ocean Observatories Initiative Washington Offshore Profiler Mooring (CE09OSPM) located at 46.8517°N, 124.982°W between approximately 35 and 510 meters water depth using a McLane® Moored Profiler (MMP). The MMP was equipped with a Sea-Bird Scientific 52-MP (SBE 52-MP) CTD instrument and an associated Sea-Bird Scientific (SBE 43F) dissolved oxygen sensor. Raw binary data files [C*.DAT (CTD data); E*.DAT (engineering data plus auxiliary sensor data) and A*.DAT (current meter data)] were converted to ASCII text files using the McLane® Research Laboratories, Inc. Profile Unpacker v3.10 application. Dissolved oxygen calibration files for each of the twenty deployments were downloaded from the Ocean Observatories Initiative asset-management GitHub® repository.  The unpacked C*.TXT (CTD data); E*.TXT (engineering data plus auxiliary sensors) and A*.TXT (current meter data) ASCII data files associated with each deployment were processed using a MATLAB® toolbox that was specifically created to process OOI MMP data. The toolbox imports MMP A*.TXT, C*.TXT, and E*.TXT data files, and applies the necessary calibration coefficients and data corrections, including adjusting for thermal-lag, flow, and sensor time constant effects. mmp_toolbox calculates dissolved oxygen concentration using the methods described in Owens and Millard (1985) and Garcia and Gordon (1992). Practical salinity and potential density are derived using the Gibbs-SeaWater Oceanographic Toolbox. After the corrections and calculations for each profile are complete, the data are binned in space to create a final, 0.5-dbar binned data set. The more than 24,000 individual temperature, practical salinity, pressure, potential density, and dissolved oxygen profiles were temporally averaged to form the final, daily averaged data set presented here. Using the methods described in Risien et al. (2023), daily temperature, practical salinity, potential density, and dissolved oxygen climatologies were calculated for each 0.5-dbar depth bin using a three-harmonic fit (1, 2, and 3 cycles per year) based on the 10-year period January 2015 to December 2024. 
    more » « less
  2. Using standard calibration schemes commercial oxygen optode sensors typically yield oxygen concentrations in the range of 2-4 umol/kg under anoxic conditions. They are thus unable to detect the roughly 0.1 umol/kg levels of oceanic functional anoxia. Here, a modified Stern-Volmer equation is used to characterize and calibrate 26 optodes deployed on 16 autonomous floats in the Eastern Tropical Pacific (ETNP) oxygen deficient zone (ODZ) using a combination of manufacturers', laboratory, and in-situ data. Laboratory calibrations lasting several months and conducted over 2 years show that optodes kept under anoxic conditions drift at rates of order 0.2 umol/kg/yr, with much higher drifts in the first month. The initial transient is plausibly due to the degassing of plastic components of the optodes and might be reduced by replacing these with metal. Oxygen concentrations measured by these calibrated optodes in the nearly anoxic ODZ core of the ETNP deviated from both the laboratory calibrations and ship-based STOX measurements by similar amounts. Thus with current sensors, an in-situ anoxic oxygen calibration only once or twice a year is needed to maintain an accuracy close to 0.2 umol/kg. An algorithm to find the anoxic cores of the ETNP ODZ is developed and used to remove the drift in the float optodes to this accuracy. This is an order-of-magnitude improvement in the low oxygen performance of the optodes and could be implemented on the existing database of Argo oxygen floats to map the geography of functional anoxia. This dataset contains the raw float data, the float data calibrated using the manufacturers’ schemes and our new scheme. The calibration points and our final calibration constants, as well as the STOX data used to validate our new calibrations, are included. Data was collected on 10 custom-built profiling 'ODZ' floats equipped with oxygen optodes and gas tension devices and on 6 standard Argo floats with oxygen sensors. Argo data was processed by Argo and recalibrated at APL/UW. ODZ float data was processed at APL/UW as described in the associated manuscript. # Oxygen data from Eastern Tropical North Pacific cruises and floats 2021-2022 [https://doi.org/10.5061/dryad.8kprr4xwk](https://doi.org/10.5061/dryad.8kprr4xwk) ## Description of the data and file structure ## **ODZ Level2.zip** contains scientific data for the ODZ floats converted from raw data using nominal calibrations. Level_2 in NASAspeak. A README, Diagnostic plots, and a Matlab conversion program are included.  The script ***MRVFloatDecode_2023.m*** reads the raw files for the ODZ floats and puts them in a single Matlab file **xo110-.mat** where the first is the float number and the second is the boot number. It makes lots of plots, which I also include. Matlab substructures and variables are: ***CTD*** – Structure containing Seabird 41CT data * P, T, S – pressure [dbar], temperature [deg C], practica salinity as computed by Seabird [psu] * time, mtime – time in Matlab datetime and datenum formats * SA, CT, Sig0 – Absolute salinity [g/kg], conservative temperature [deg C], potential density [kg/m^3] * CC, W, Drag–estimated oil volume [cc], vertical velocity [m/s], Drag force (for ballasting) [N] ***GPS*** – position * time, mtime - time as Matlab datetime, Matlab datnum * lat,lon- location degrees latitude, degrees longitude * nsat, hdop – number of satellites, horizontal dilution of precision ***GTD*** – Gas Tension Sensor * time, mtime - time as Matlab datetime, Matlab datnum, * P, T, S, Sig0 – Pressure [dbar], temperature [deg C], practical salinity [psu], potential density [kg/m^3] * GT – gas tension [mbar] * Tgtd – temperature of GTD [ deg C]  * Ref- time [matlab datenum], temperature [deg C], pressure [mbar] for reference sensor * Other variables are calibration constants and check values. ***SBE5M1,SBE5M2*** - status of pumps. 1 is for optode(1) and GTD. 2 is for reference optod  ***oldGTD*** - One float had an old-style GTD for reference.  ***optode*** - SBE63 optodes (1) is water optode, (2) is reference optode * time, time -time as Matlab datum and date time * SN – optode serial number * red_amp, blue_amp- amplitudes of red and blue LEDs [counts] * red-phase, blue-phase- phases [microvolts] of fluorescence phase. * O2phase- their difference [microvolts] used to compute oxygen * T – optode temperature [deg C] * O2uM – optode’s computed oxygen concentration converted to uMol/kg. * Tctd, S, P, Sig0 – CTD interpolated to optode time - temperature [deg C], practical salinity [psu], pressure [dbar], potential density [kg/m^3] ***ADC, AirPump, AirValve, OilPump,*** ***OilValve*** - structures diagnosing the buoyancy system operations. Scientfically uninteresting. ## ***STOX Oxygen Profiles.zip*** Contains high precision oxygen profiles taken on the two Sally Ride cruises using STOX oxygen sensors. The data is provided as .txt and .mat formats along with miscellaneous data from the CTD. Oxygen measurements from the floats were referenced to STOX oxygen profiles taken from the ship on the two cruises because these provide much more stable and high precision measurements. STOX sensors are described in detail in Revsbech, N. P.; Larsen, L. H.; Gundersen, J.; Dalsgaard, T.; Ulloa, O. and Thamdrup, B. ( 2009) Determination of ultra‐low oxygen concentrations in oxygen minimum zones by the STOX sensor. Limnology and Oceanography: Methods, 7, pp.371-381. DOI:10.4319/lom.2009.7.371. And from their manufacturer [https://unisense.com/products/stox-microsensor/](https://unisense.com/products/stox-microsensor/) STOX data was collected on two cruises of the research vessel, Sally Ride, SR 2114 and SR2011. Data from each CTD cast with a STOX profile is in a separate folder in this archive. In each, the raw data is in a ****.txt*** file and the converted Matlab data is in a ****.mat*** file. MATLAB scripts to read the ****.mat*** file are included in each folder. Data names and units are: Ship Cruise Station Cast Year Month Day Hour Minute * Depth [m] * Latitude [deg]  * Longitude [deg] * Density [sigma-theta,kg/m^3]  * Temperature [ºC]  * Salinity * Beam Attenuation [1/m] * Fluorescence [mg Chla/m3]  * PAR [umol/m2/s] * Oxygen_SBE [µmol/kg]) * Oxygen_STOX [µmol/kg] * STOX_SD [µmol/kg] * STOX_n [µmol/kg] * NO3-Suna [uM] ## **Optode Calibration.zip**  Contains all of the calibration data used to calibrate the optodes including the anoxic laboratory points, the manufacturers' calibration points, and the coefficients of the calibration model for each optode.  **Seabird 63 Optodes** Anoxic calibration data and model fit are in ***AnoxicCalibration/SBE63/2020/*** and ***/2021/***. The 2020 data was used in the final calibration. * Files are *******Tau0model.mat*** where **** is the optode serial number * Variable ***meta*** explains each variable, repeated here. Calibration model is '1./Taup.*exp(-(Etau+Etau2.*(K-283.15).^2)/R/K )*(1+Drift *(days since start) )' Variables are * Taup: 'Phase [uS]' * Etau: 'Energy is Etau+Etau2*(T-10C) [J/mol] * Drift: 'Drift coefficient in the model [1/days] * Ttau: 'Time scale of drift [days] * Drift_uSday: 'Model Drift uS/day' * Dcal: 'Robust Drift. The drift line is Dcal(2)+ Dcal(1)*(Yearday of 2021) in uMol. Drift is Dcal(1) [uMol/day] * Drms: 'RMS drift fit error [uS] * Derr: 'Uncertainty in Dcal; Drift uncertainty is Derr(1) [uMol/day]'  Calibration points from the anoxic tank are in structure ***RawS.*** Variable ***meta*** explains each variable, repeated here. * K: 'Temperature [Kelvin]' * O2phase: 'O2 phase tau [uS]' * R: 'Gas constant [J/K/mol] * dyd: 'Time since start of record [days]' * TIME: 'Time [matlab datetime] * Omodel: 'Tau computed from model with drift [uS] * OmodelND: 'Tau computed from model with drift removed [uS] **Full Calibration/** contains the oxic calibration points and calibration coefficients Calibration points from Seabird supplied with optode are in **SBE63/*FactoryCalibration/ ****_dd_mmm_yyyy.mat ***where **** is the optode serial number. The calibration date follows. Variables are * Caltime - Calibration time [matlab datum] * ID - Serial number * O2in_mll - Oxygen in tank from winklers [ml/L] * O2out_mll - Oxygen computed from Seabird calibration [ml/L] * S - Salinity [psu] * T - Temperature [deg C] * resid_mll - model residual [ml/L] * tau_us - optode phase lag [microseconds] The oxic part of the optode model calibration coefficients are in ***SBE63/Calfiles/*** Calibration model, coefficients, and check values are in ***Calfiles/_oxic_model.mat*** where **** is the optode SN Data is in structure ***Kfile*** ***Kfile.meta*** explains the variables, repeated here. Model is pO2=eta/K(T) * (1 + a(T)*eta^2.3)^q(T) ; eta= tau0(T)/tau-1.  Note that tau0(T) is computed from *******_Tau0model.mat*** coefficients above. Variables are * Check: 'Test values of T, Tau, and pO2 from SBE cal' * Lk: 'K(T)=polyval(Lk, T) - Matlab call to compute K from Lk polynomial coefficients and T [deg C] * La: 'a(T)=polyval(La,T)' * Lq: 'q(T)=polyval(Lq,T)' **Aanderaa 4330 Optodes** **Anoxic calibration** data and model fit is in ***AnoxicCalibration/AA/*** \**                  **File names and formats are the same as for SBE63 optodes **Full Calibration/AA** **/Factory Calibrations** contains the calibration information supplied with the optodes Files are *******_dd-mmm-yyyy.mat*** with the same format as for the SBE63 The relevant variables are: * Caltime - Calibration time [matlab datenum] * ID - Serial number of optode * O2in_uMol - Calibration bath oxygen [uMol/L] * S - Salinity [psu] * T - Temperature from optode [deg C] * tau_deg - optode output phase [degrees] * meta - Misc information **/Calfiles/********_M0_oxic_model.mat** contain oxic part of the optode model calibration coefficients The format is the same as for SBE63, but there is an extra variable * eta_off: Add this to eta to account for drift since calibration [uS] ## **Calibrated Oxygen.zip** contains both uncalibrated and calibrated optode data for both the ODZ and Argo floats. A README file and Matlab processing programs are included. /***SBE63/xo110**-***.mat*** contain the calibrated data for **ODZ float xo110** Format and data is identical to that in the ***optode*** structure in ***ODZ_Level2_Mat,*** but with 2 extra variables * pO2 – partial pressure of oxygen [mbar] in uncalibrated data * Cal – a structure containing calibrated data -- FINAL DATA IS HERE * pO2: partial pressure of oxygen [mbar] in calibrated data  * Tau0m: Calibration model of anoxic phase [microsecond]. Includes offset. * Tau: Measured phase [microsecond] * Tauoff: offset in Tau from in situ calibration [uS] * eta: (Tau0m+Tauoff)/Tau-1 * O2uM: oxygen concentration [micromoles/kg] * O2umol: same Note that optode(1) is the water oxygen. Optode(2) is a reference optode, which is not of scientific interest.  **/SBE63/Reprocess_SBE63.m** is a MATLAB script showing how to combine calibration data and float data to make calibrated data for SBE63 optodes **/AA/Mat/*FloatID*/*FloatID_profilenum*.mat** contains Argo float data from float FloatID, profile number profilenum. Variables are Data from Argos float archive * mtime, time - time in datetime and datenum formats * lat, lon - GPS position latitude degrees and longitude degrees * P, T, S - CTD pressure [dbar], temperature [deg C], salinity [psu] * Optode - Optode serial number * O2T - Optode temperature [deg C] * O2phase - Optode phase [degrees] * O2umol - Optode oxygen [micromole/kg] Added variables * Kfile - Structure as in Optode Calibration files. Kfile.meta also has metadata * Cal - Structure containing calibrated optode data on the same timebase * Tau - measured phase [degrees] * Tau0m - Model anoxic phase [degrees] * Tauoff - Offset from laboratory calibration [degrees]. Includes offset & drift. * Drift - Drift [degrees/year] * mtime0 - base time for drift [matlab datenum format] * eta - Tau0m/Tau-1 * pO2 - Calibrated Oxygen partial pressure [mbar] * O2umol - Calibrated Oxygen concentration [micromole/kg] * meta - similar list to this one. * SN - same as Optode * Float - FloatID **/AA/Mat/*FloatID*/*FloatID_profilenum*.xls** contains the calibrated data in Excel format ***/AA/Reprocess_3_AA.m*** is a MATLAB script showing how to combine calibration data and float data to make calibrated data for AA optodes ## ***ODZ Raw\.zip*** contains the raw data from 9 custom-built ODZ floats. Level_1 in NASAspeak. They can be read by ***MRVFloatDecode_2023.m*** included in ***ODZ Level 2 files*** ## Code/Software Processing and reading scripts in Matlab (24.1.0.2628055 (R2024a) Update 4) are provided. 
    more » « less
  3. This dataset includes water-column data collected from the Beaufort Shelf during the open-water seasons in 2020, 2021, and 2022. The 2020 data include water-column profiles (salinity, temperature, depth, turbidity, particle size distributions, particle volume concentrations, and uncorrected clorophyll-a) collected with an RBR CTD/Tu (conductivity, temperature, depth, turbidity) sensor and LISST sensor from R/V Sikuliaq and its workboat. Most sites were in the Harrison Bay region (north of the Colville Delta and Simpson Lagoon) and a few were located farther east. The 2021 and 2022 data include the same CTD/Tu and LISST data that were collected in 2020, but are focused in Harrison Bay and also include profiles of light intensity (photosynthetically active radiation) as well as ADCP (acoustic doppler current profile) profiles from a pole-mounted Nortek Signature 500 kilohertz (kHz) sensor. In 2021, additional data include filtration data (total suspended solids, suspended sediment concentrations, and organic fractions) from water samples and hi-resolution echosounder data from the Nortek ADCP. These data are being incorporated into publications about summertime water-column properties and sediment transport dynamics within Harrison Bay (Eidam et al., pending). 
    more » « less
  4. Stream water was collected at weekly to monthly intervals at 29 stream sites in New Hampshire (USA). Ten of the stream sites were instrumented with high‐frequency sensors. Twenty-one of the stream sites (including 5 sensor sites) are in the Lamprey River Hydrologic Observatory (LRHO; Wymore et al 2021) and two stream sites were nearby the LRHO. Groundwater was collected from two riparian well fields (JF, 14 wells and WHB, 13 wells). Wells were installed in 2004 and sampled monthly through May 2007, then quarterly until December 2009, after which a subset (JF, 6 and WHB, 5) was generally sampled quarterly. Stream and groundwater samples span a 17-year collection period and were analyzed for sodium, chloride and specific conductance. Methods and findings are described in the associated Limnology and Oceanography Letters manuscript. 
    more » « less
  5. This dataset contains a compressed folder of the data and MATLAB scripts used produce relevant figures and candidates for GRITCLEAN: A glitch veto scheme for Gravitational wave data as presented in https://arxiv.org/abs/2401.15237  The codes in this dataset include: A PSO-based matched filtering search pipeline which can be run on either the positive or the negative chirp time space. A standalone MATLAB script called GRITCLEAN.m which can run the GRITCLEAN hierarchical vetoes on a set of positive and negative chirp time space estimated parameters.  A plotting script to generate relevant figures. The files in this dataset include: GVSsegPSDtrainidxs.mat, a binary MATLAB file containing training indices for all segments from which the Power Spectral Densities (PSDs) are estimated, this is done via the scripts provided, namely, getsegPSD.m and createPSD.m. A sample HDF5 file used (H-H1_GWOSC_O3a_4KHZ_R1-1243394048-4096.hdf5) JSON files containing information about the data segments and the strain data files from which they originate from.  Text files containing the parameters estimated by the PSO-based pipeline across the positive and negative chirp time space runs.  Detailed instructions on dependencies, downloading the dataset and running the codes are given in a README.txt file included with this dataset. The user is recommended to go through this file first. The scripts enclosed have dependencies on JSONLAB , the Parallel Computing Toolbox and Signal Processing Toolbox for MATLAB, along with additional scripts provided in GitHub repositories  Accelerated-Network-Analysis  and SDMBIGDAT19 . Instructions on installing these dependencies are provided in README.txt. All codes have been developed and tested on MATLAB R2022 and R2023. 
    more » « less