The radon isotope and stable water isotope data for Coal Creek Watershed, Colorado, consists of d2H, d18O, and 222Rn values from samples collected at 8 stream location along Coal Creek, samples from 7 groundwater springs within the watershed, and precipitation isotope samples collected by Next Generation Water Observing System (NGWOS) from a collector within the watershed. All stream and spring samples were collected between June and October, 2021, and precipitation isotope samples were collected between November 2020 and September 2021. These data were collected to evaluate how groundwater contributions to Coal Creek originating from a fractured hillslope and alluvial fan respond to summer monsoon rains and seasonal drying. Understanding of groundwater-surface water interactions in montane systems in critical for the future of water availability in the Western US as groundwater contributions are expected to become more important for sustaining summer stream flows. This data package contains: (1) a csv of all radon samples; (2) a csv of all stream and spring isotope samples; (3) a csv of precipitation isotope samples; and (4) a csv of locations for each sampling site. The dataset additionally includes a file-level metadata (flmd.csv) file that lists each file contained in the dataset with associated metadata; and a data dictionary (dd.csv) file that contains column/row headers used throughout the files along with a definition, units, and data type.
more »
« less
Geochemistry and Strontium Isotopes for Coal Creek Watershed, Colorado, 2021-2022
The geochemistry and strontium isotope data for Coal Creek Watershed, Colorado, consists of cation, anion, and 87Sr/87Sr isotope values from samples collected at 8 stream location along Coal Creek, samples from two groundwater springs within the watershed, and a shallow subsurface piezometer. All stream and spring samples were collected between June and October, 2021, and the shallow, near stream piezometer sample was collected in July of 2022. These data were collected to evaluate how groundwater contributions to Coal Creek originating from shallow vs deep flow paths respond seasonal drying. Understanding of groundwater-surface water interactions in montane systems in critical for the future of water availability in the Western US as groundwater contributions are expected to become more important for sustaining summer stream flows. This data package contains: (1) a csv of all cation samples; (2) a csv of all anion samples; (3) a csv of all 87Sr/87Sr isotope samples; and (4) a csv of locations for each sampling site. The dataset additionally includes a file-level metadata (flmd.csv) file that lists each file contained in the dataset with associated metadata; and a data dictionary (dd.csv) file that contains column/row headers used throughout the files along with a definition, units, and data type.
more »
« less
- Award ID(s):
- 2012796
- PAR ID:
- 10590510
- Publisher / Repository:
- Environmental System Science Data Infrastructure for a Virtual Ecosystem; Watershed Function SFA
- Date Published:
- Subject(s) / Keyword(s):
- 54 ENVIRONMENTAL SCIENCES EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SURFACE WATER EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GROUND WATER EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > WATER QUALITY/WATER CHEMISTRY EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > WATER QUALITY/WATER CHEMISTRY > ISOTOPES > RADIOISOTOPES EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GROUND WATER > GROUND WATER FEATURES > FRESHWATER SPRINGS EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SURFACE WATER > SURFACE WATER FEATURES > RIVERS/STREAMS ESS-DIVE File Level Metadata Reporting Format ESS-DIVE CSV File Formatting Guidelines Reporting Format
- Format(s):
- Medium: X
- Location:
- Coal Creek is a small (53 km2), high-elevation, headwater tributary to the Upper Colorado Basin located in the Ruby-Anthracite Range in the central Colorado Rocky Mountains (Figure 1). Coal Creek is located within the larger East River watershed (HUC-10 watershed 750 km2), which hosts the Watershed Function Science Focus Area (SFA) supported by the U.S. Department of Energy and a watershed observatory within the Critical Zone Collaborative Network (CZCN) supported by the National Science Foundation. Coal Creek is geologically bisected; the lower portion of the watershed is underlain predominately by sandstone (Upper Cretaceous Mesaverde Formation) while the upper portion of the watershed is underlain predominately by mafic intrusive plutonic rock.; The East River (ER) is a snow‐dominated, headwater basin of the Upper Colorado River Basin (UCRB) located in the western United States. The ER is the designated testbed of Lawrence Berkeley National Laboratory's Watershed Function Scientific Focus Area (WFSFA). Through WFSFA, observational networks have been established to measure stream discharge and precipitation chemistry. The ER is considered representative of many snow‐dominated headwaters of the Rocky Mountains. The study domain encompasses nearly 85 square km, a 1.4‐km vertical drop in elevation (4,120 to 2,760 m) and pristine alpine, subalpine, montane, and riparian ecosystems. The ER contains high‐energy mountain streams to low‐energy meandering floodplains and is eroding primarily into the Cretaceous, carbon‐rich, marine shale of the Mancos Formation. Additional metadata on specific locations within the watershed are provided in the following related data package: Varadharajan C. et al. (2023) doi:10.15485/1660962
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We used spatial data from previously mapped preferential groundwater discharges throughout the Farmington River watershed in Connecticut and Massachusetts (https://doi.org/10.5066/P915E8JY) to guide water sample collection at known locations of groundwater discharging to surface water. In 2017 and 2019 - 2021, samples were collected during general river baseflow conditions (July ? November, less than 30.9 cms mean daily discharge (USGS gage 01189995, statistics 2010-2022) when the riverbank discharge points were exposed. We collected a suite of dissolved constituents and stable isotopes of water directly in the shallow saturated sediments of active points of discharge, and coincident stream chemical samples were also collected adjacent to locations of groundwater discharge. Data collected includes nutrients (NO3, NH4, Cl, SO4, PO4, dissolved organic carbon (DOC), and total nitrogen (TN)), greenhouse gases (CO2, CH4, and N2O), dissolved gases (N2, dissolved oxygen (DO)), conductivity, sediment characteristics, temperature, and spatial information. This dataset includes 2 main files: 1) Farmington_Chemistry_2017_2021.csv contains attribute information for each biogeochemical constituent collected at preferential groundwater discharges along the Farmington River network. 2)Farmington_Temporal_Cl_Rn_Iso_2020.csv contain attribute information for source characteristic data (Chloride, Radon, Isotope) collected at locations of repeat sampling at 5 groundwater seep faces along the Farmington River (Alsop and Rainbow Island).more » « less
-
Geologic features (e.g., fractures and alluvial fans) can play an important role in the locations and volumes of groundwater discharge and degree of groundwater-surface water (GW-SW) interactions. However, the role of these features in controlling GW-SW dynamics and streamflow generation processes are not well constrained. GW-SW interactions and streamflow generation processes are further complicated by variability in precipitation inputs from summer and fall monsoon rains, as well as declines in snowpack and changing melt dynamics driven by warming temperatures. Using high spatial and temporal resolution radon and water stable isotope sampling and a 1D groundwater flux model, we evaluated how groundwater contributions and GW-SW interactions varied along a stream reach impacted by fractures (fractured-zone) and downstream of the fractured hillslope (non- fractured zone) in Coal Creek, a Colorado River headwater stream affected by summer monsoons. During early summer, groundwater contributions from the fractured zone were high, but declined throughout the summer. Groundwater contributions from the non-fractured zone were constant throughout the summer and became proportionally more important later in the summer. We hypothesize that groundwater in the non-fractured zone is dominantly sourced from a high-storage alluvial fan at the base of a tributary that is connected to Coal Creek throughout the summer and provides consistent groundwater influx. Water isotope data revealed that Coal Creek responds quickly to incoming precipitation early in the summer, and summer precipitation becomes more important for streamflow generation later in the summer. We quantified the change in catchment dynamic storage and found it negatively related to stream water isotope values, and positively related to modeled groundwater discharge and the ratio of fractured zone to non-fractured zone groundwater. We interpret these relationships as declining hydrologic connectivity throughout the summer leading to late summer streamflow supported predominantly by shallow flow paths, with variable response to drying from geologic features based on their storage. As groundwater becomes more important for sustaining summer flows, quantifying local geologic controls on groundwater inputs and their response to variable moisture conditions may become critical for accurate predictions of streamflow.more » « less
-
The data files in this data set contain climate information from sites on the North Slope of Alaska in or near the Kuparuk River basin. The data was collected for a hydrologic study of rivers in the North Slope region between 1985-present. Hydro-meteorological stations were established at various locations throughout the Kuparuk, but also in the Putuligayuk and Sagavanirktok watersheds. The variables collected at most stations were air temperature, humidity, wind speed and direction, soil temperature, snow temperature, precipitation, snow depth, and radiation. In the Imnavait Creek watershed (headwaters of the Kuparuk River), the Imnavait B site (IB) meteorological station operated from 1986 to present. This data package contains meteorological data from the Imnavait B site (IB) station and snow depth from the nearby station in the valley bottom (Imnavait Creek weir [IH]) collected from 2017 to 2023. Variables in this data package include air temperature, relative humidity, wind speed and direction, rainfall, and radiation at the Imnavait B site (IB) (2018-2023) and winter snow depth at Imnavait Weir (IH) (2017-2023). IMPORTANT NOTE: This dataset contains Imnavait B site (IB) meteorological data for 2018-2023. Updates and corrections to Imnavait B site (IB) (and others) were made in 2021 to the original datasets by the investigators, and all of the previously published data files (prior to 2008) should be replaced with the updated dataset (1985-2018) available at https://arcticdata.io/catalog/view/doi%3A10.18739%2FA2TQ5RF72. The following corrections were made to the datasets originally published in 2008 and 2010 (for data collected 1985-2008): 1) data from annual .csv files were merged into one .csv file (for each station) containing all years of data, 2) appended new data collected from 2008 to 2018 into the .csv file 3) standardized file headers, 4) standardized variable names, units, and sensor installation height above ground surface 5) reviewed all data for quality assurance and added qualifiers to erroneous data, 6) added a data qualifier to wind data during periods of extensive riming on wind sensors, 7) added a qualifier when air temperatures are below -39 degrees Celsius (C) (minimum reporting temperature of some air temperature sensors), and 8) removed duplicative data and fixed timestamp issues. See https://arcticdata.io/catalog/view/urn%3Auuid%3Ad5fa4cfa-b84b-4970-926a-8dd10b418e6d for additional climate data from other nearby stations in our studies.more » « less
-
ABSTRACT Hydrologic connectivity is defined as the connection among stores of water within a watershed and controls the flux of water and solutes from the subsurface to the stream. Hydrologic connectivity is difficult to quantify because it is goverened by heterogeniety in subsurface storage and permeability and responds to seasonal changes in precipitation inputs and subsurface moisture conditions. How interannual climate variability impacts hydrologic connectivity, and thus stream flow generation and chemistry, remains unclear. Using a rare, four‐year synoptic stream chemistry dataset, we evaluated shifts in stream chemistry and stream flow source of Coal Creek, a montane, headwater tributary of the Upper Colorado River. We leveraged compositional principal component analysis and end‐member mixing to evaluate how seasonal and interannual variation in subsurface moisture conditions impacts stream chemistry. Overall, three main findings emerged from this work. First, three geochemically distinct end members were identified that constrained stream flow chemistry: reach inflows, and quick and slow flow groundwater contributions. Reach inflows were impacted by historic base and precious metal mine inputs. Bedrock fractures facilitated much of the transport of quick flow groundwater and higher‐storage subsurface features (e.g., alluvial fans) facilitated the transport of slow flow groundwater. Second, the contributions of different end members to the stream changed over the summer. In early summer, stream flow was composed of all three end members, while in late summer, it was composed predominantly of reach inflows and slow flow groundwater. Finally, we observed minimal differences in proportional composition in stream chemistry across all four years, indicating seasonal variability in subsurface moisture and spatial heterogeneity in landscape and geologic features had a greater influence than interannual climate fluctuation on hydrologic connectivity and stream water chemistry. These findings indicate that mechanisms controlling solute transport (e.g., hydrologic connectivity and flow path activation) may be resilient (i.e., able to rebound after perturbations) to predicted increases in climate variability. By establishing a framework for assessing compositional stream chemistry across variable hydrologic and subsurface moisture conditions, our study offers a method to evaluate watershed biogeochemical resilience to variations in hydrometeorological conditions.more » « less
An official website of the United States government
