The nanoscale electrical and mechanical properties in the CdTe thin films solar cells were investigated using the scanning probe microscopy. The comparative localized electrical and mechanical properties between as-grown and CdCl2 treated CdTe thin films for the grain and grain boundaries were studied using the conductive atomic force microscopy (cAFM) and force modulation microscopy (FMM). An increased electrical behavior and decreased elastic stiffness in the CdCl2 treated thin films were recorded to elucidate the impact from the grain growth of CdTe grains. On applying a simulated working electrical bias into the CdTe thin-film solar cells, the electric field across the CdTe film can increase the softness of CdTe thin film. The results imply the presence of a potential mechanical failure site in the CdTe grain boundary, which may lead to device degradation. 
                        more » 
                        « less   
                    
                            
                            Impact of Surface Roughness in Measuring Optoelectronic Characteristics of Thin-Film Solar Cells
                        
                    
    
            Microstructural properties of thin-film absorber layers play a vital role in developing high-performance solar cells. Scanning probe microscopy is frequently used for measuring spatially inhomogeneous properties of thin-film solar cells. While powerful, the nanoscale probe can be sensitive to the roughness of samples, introducing convoluted signals and unintended artifacts into the measurement. Here, we apply a glancing-angle focused ion beam (FIB) technique to reduce the surface roughness of CdTe while preserving the subsurface optoelectronic properties of the solar cells. We compare the nanoscale optoelectronic properties “before” and “after” the FIB polishing. Simultaneously collected Kelvin-probe force microscopy (KPFM) and atomic force microscopy (AFM) images show that the contact potential difference (CPD) of CdTe pristine (peak-to-valley roughness > 600 nm) follows the topography. In contrast, the CPD map of polished CdTe (< 20 nm) is independent of the surface roughness. We demonstrate the smooth CdTe surface also enables high-resolution photoluminescence (PL) imaging at a resolution much smaller than individual grains (< 1 μm). Our finite-difference time-domain (FDTD) simulations illustrate how the local light excitation interacts with CdTe surfaces. Our work supports low-angle FIB polishing can be beneficial in studying buried sub-microstructural properties of thin-film solar cells with care for possible ion-beam damage near the surface. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2048152
- PAR ID:
- 10505116
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- 50th IEEE Photovoltaic Specialists Conference
- Format(s):
- Medium: X
- Location:
- San Juan, Puerto Rico
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Surface nanobubbles forming on hydrophobic surfaces in water present an exciting opportunity as potential agents of top-down and bottom-up nanopatterning. The formation and characteristics of surface nanobubbles are strongly influenced by the physical and chemical properties of the substrate. In this study, focused ion beam (FIB) milling is used for the first time to spatially control the nucleation of surface nanobubbles with 75 nm precision. The spontaneous formation of nanobubbles on alternating lines of a self-assembled monolayer (octadecyltrichlorosilane) patterned by FIB is detected by atomic force microscopy. The effect of chemical vs topographical surface heterogeneity on the formation of nanobubbles is investigated by comparing samples with OTS coating applied pre- vs post-FIB patterning. The results confirm that nanoscale FIB-based patterning can effectively control surface nanobubble position by means of chemical heterogeneity. The effect of FIB milling on nanobubble morphology and properties, including contact angle and gas oversaturation, is also reported. Molecular dynamics simulations provide further insight into the effects of FIB amorphization on surface nanobubble formation. Combined experimental and simulation investigations offer insights to guide future nanobubble-based patterning using FIB milling.more » « less
- 
            Rapid progress has been achieved in perovskite solar cells, improving the efficiency from 3.8 % to 25.7 % in less than a decade. However, the stability of perovskites still need to be improved before commercialization. This study reports the thermal stability of perovskites exposed to an ion beam irradiation. Such combined stressors are seen in atomic/nanoscale microscopy, where a perovskite lamella is characterized using a controlled heating/cooling stage. Focused ion beams (FIBs) are frequently used to section perovskites of interest. Previous studies proposed that high-energy electron beams could cause unexpectedly fast thermal degradation. Alternatively, the perovskite surface may be already altered during FIB processes, accelerating the deterioration. Here, we use a grazing angle argon ion (Ar+) beam directly irradiated on methyl-ammonium lead iodide (MAPbI3) to test the impact of ion beams to degradation mechanisms.more » « less
- 
            Abstract A single-beam ion source was developed and used in combination with magnetron sputtering to modulate the film microstructure. The ion source emits a single beam of ions that interact with the deposited film and simultaneously enhances the magnetron discharge. The magnetron voltage can be adjusted over a wide range, from approximately 240 to 130 V, as the voltage of the ion source varies from 0 to 150 V, while the magnetron current increases accordingly. The low-voltage high-current magnetron discharge enables a ‘soft sputtering mode’, which is beneficial for thin-film growth. Indium tin oxide (ITO) thin films were deposited at room temperature using a combined single-beam ion source and magnetron sputtering. The ion beam resulted in the formation of polycrystalline ITO thin films with significantly reduced resistivity and surface roughness. Single-beam ion-source-enhanced magnetron sputtering has many potential applications in which low-temperature growth of thin films is required, such as coatings for organic solar cells.more » « less
- 
            De_Angelis, Filippo (Ed.)An integration of perovskite and cadmium telluride (CdTe) solar cells in a tandem configuration has the potential to yield efficient thin-film tandem solar cells. Owing to the promise of higher efficiency at low cost, the presented study aims to explore the potential for combining this commercially established CdTe photovoltaics (PV) with next-generation perovskite PV. Here, we developed four-terminal (4-T) CdTe/perovskite tandem solar cells, starting with 18.3% efficient near-infrared-transparent perovskite solar cells (NIR-TPSCs) with an average transmission (Tavg) of 24.76% in the 300−900 nm wavelength range. These were then integrated with 19.56% efficient opaque CdTe solar cells, achieving 23.42% efficiency in a 4-T tandem configuration. Additionally, using a refractive index matching liquid increases the overall power conversion efficiency (PCE)to 24.2%. This pioneering achievement marks the first instance of a 4-T CdTe/perovskite thin-film tandem solar cell exceeding a PCE of 24.2%, a significant 123.72% increase in overall PCE.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    