skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local mechanical and electrical behavior in CdTe thin film solar cells revealed by scanning probe microscopy
The nanoscale electrical and mechanical properties in the CdTe thin films solar cells were investigated using the scanning probe microscopy. The comparative localized electrical and mechanical properties between as-grown and CdCl2 treated CdTe thin films for the grain and grain boundaries were studied using the conductive atomic force microscopy (cAFM) and force modulation microscopy (FMM). An increased electrical behavior and decreased elastic stiffness in the CdCl2 treated thin films were recorded to elucidate the impact from the grain growth of CdTe grains. On applying a simulated working electrical bias into the CdTe thin-film solar cells, the electric field across the CdTe film can increase the softness of CdTe thin film. The results imply the presence of a potential mechanical failure site in the CdTe grain boundary, which may lead to device degradation.  more » « less
Award ID(s):
1844210
PAR ID:
10597480
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
9
Issue:
8
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microstructural properties of thin-film absorber layers play a vital role in developing high-performance solar cells. Scanning probe microscopy is frequently used for measuring spatially inhomogeneous properties of thin-film solar cells. While powerful, the nanoscale probe can be sensitive to the roughness of samples, introducing convoluted signals and unintended artifacts into the measurement. Here, we apply a glancing-angle focused ion beam (FIB) technique to reduce the surface roughness of CdTe while preserving the subsurface optoelectronic properties of the solar cells. We compare the nanoscale optoelectronic properties “before” and “after” the FIB polishing. Simultaneously collected Kelvin-probe force microscopy (KPFM) and atomic force microscopy (AFM) images show that the contact potential difference (CPD) of CdTe pristine (peak-to-valley roughness > 600 nm) follows the topography. In contrast, the CPD map of polished CdTe (< 20 nm) is independent of the surface roughness. We demonstrate the smooth CdTe surface also enables high-resolution photoluminescence (PL) imaging at a resolution much smaller than individual grains (< 1 μm). Our finite-difference time-domain (FDTD) simulations illustrate how the local light excitation interacts with CdTe surfaces. Our work supports low-angle FIB polishing can be beneficial in studying buried sub-microstructural properties of thin-film solar cells with care for possible ion-beam damage near the surface. 
    more » « less
  2. We report on the growth, grain enhancement, doping, and electron mobility of cadmium selenide (CdSe) thin films deposited using the thermal evaporation method. The optical measurement shows CdSe is a direct bandgap material with an optical bandgap (Egap) of 1.72 eV. CdSe thin films were deposited on fluorine doped tin oxide glass substrates with different thicknesses, and grain size and mobility were measured on the films. CdCl2 was deposited on the films, and the films were subjected to high temperature treatment for several hours. It was found that both grain sizes increased significantly after CdCl2 treatment. The mobility of electrons was measured using the space charge limited current technique, and it was found that the mobility increased significantly after CdCl2 treatment. It was discovered that postdeposition selenization further improved the electrical properties of CdSe thin films by increasing the electron mobility-lifetime product and the photo/dark conductivity ratio. CdSe films after postselenization also showed significantly lower values for midgap states and Urbach energies for valence band tail states. 
    more » « less
  3. Cadmium telluride (CdTe) thin-film semiconductors exhibit many desirable properties for low-cost and high-efficiency photovoltaic (PV) technology, including inherent robustness of inorganic absorber, a direct bandgap that allows full absorption of the solar spectrum with thicknesses of only few microns, and inexpensive and high-throughput manufacturing processes. At the best efficiency of 22 %, the power conversion efficiency of CdTe PVs is still well below the maximum theoretical limit (approximately 30 %). It has been suggested that the inferior efficiency is mainly attributed to the inherent polycrystalline nature of CdTe absorber (e.g., grains, grain boundaries). Understanding local photocarrier dynamics is vital to overcoming roadblocks toward higher efficiency CdTe PVs. However, conventional cell-level PV measurements often limit the microstructural analysis. In this work, we present a local PV characterization technique using point back-contacts. The thin-film CdTe solar cells used in this work were prepared by CSS (close-spaced sublimation) on a stack of n-type window layer (e.g., CdS) / transparent conductive layer (TCO; e.g., SnO2) / glass substrate. 
    more » « less
  4. De_Angelis, Filippo (Ed.)
    An integration of perovskite and cadmium telluride (CdTe) solar cells in a tandem configuration has the potential to yield efficient thin-film tandem solar cells. Owing to the promise of higher efficiency at low cost, the presented study aims to explore the potential for combining this commercially established CdTe photovoltaics (PV) with next-generation perovskite PV. Here, we developed four-terminal (4-T) CdTe/perovskite tandem solar cells, starting with 18.3% efficient near-infrared-transparent perovskite solar cells (NIR-TPSCs) with an average transmission (Tavg) of 24.76% in the 300−900 nm wavelength range. These were then integrated with 19.56% efficient opaque CdTe solar cells, achieving 23.42% efficiency in a 4-T tandem configuration. Additionally, using a refractive index matching liquid increases the overall power conversion efficiency (PCE)to 24.2%. This pioneering achievement marks the first instance of a 4-T CdTe/perovskite thin-film tandem solar cell exceeding a PCE of 24.2%, a significant 123.72% increase in overall PCE. 
    more » « less
  5. CdSe is potentially an important material for making tandem junction solar cells with Si and CIGS. Thermodynamic calculations reveal the potential Shockley-Queisser efficiency of such a tandem cell to be in the 45% range. CdSe has the optimum bandgap (1.72eV) for a tandem cell with Si. In this paper, we show that this material system is indeed capable of achieving good electronic properties and reasonable devices can be made in the material. We report on fabricating CdSe materials and heterojunction CdSe solar cells in both superstrate and substrate configurations on FTO/glass and metal substrates. CdSe layer was deposited using thermal evaporation and then was post-treated with CdCl2 to enhance the grainsize and passivate grain boundaries. The device was an ideal heterojunction structure consisting of glass/FTO/n+CdS/ n-CdSe/p organic layer/NiO/ITO. The n+ CdS layer acted to prevent hole recombination at the n+/n interface, and the p organic layer (such as PEDOT:PSS or P3HT) acted to prevent electron recombination at the p+/n interface. The NiO layer was deposited on top of the organic layer to prevent decomposition of the organic layer during ITO deposition. World-record open-circuit voltages exceeding 800 mV and currents of ~15 mA/cm2 were obtained in devices. Detailed material measurements such as SEM revealed large grain sizes approaching 8 micrometer in some of the films after grain enhancement. Optical measurements and QE measurements show the bandgap to be 1.72 eV. XPS measurements showed the CdSe film to be n type. Space-charge limited current was used to measure electron mobilities which were in the range of 1-2 cm2/V-s. Capacitance spectroscopy showed the doping densities to be in the range of a few x 1015/cm3. For substrate devices, the quantum efficiency obtained was in the 90% range. 
    more » « less