skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Monitoring Stability of Metal-Halide Perovskites Under Combined Stressors of Ion-Beam and Heat
Rapid progress has been achieved in perovskite solar cells, improving the efficiency from 3.8 % to 25.7 % in less than a decade. However, the stability of perovskites still need to be improved before commercialization. This study reports the thermal stability of perovskites exposed to an ion beam irradiation. Such combined stressors are seen in atomic/nanoscale microscopy, where a perovskite lamella is characterized using a controlled heating/cooling stage. Focused ion beams (FIBs) are frequently used to section perovskites of interest. Previous studies proposed that high-energy electron beams could cause unexpectedly fast thermal degradation. Alternatively, the perovskite surface may be already altered during FIB processes, accelerating the deterioration. Here, we use a grazing angle argon ion (Ar+) beam directly irradiated on methyl-ammonium lead iodide (MAPbI3) to test the impact of ion beams to degradation mechanisms.  more » « less
Award ID(s):
2048152
PAR ID:
10505221
Author(s) / Creator(s):
; ;
Publisher / Repository:
Materials Research Society
Date Published:
Journal Name:
Electronic Materials Conference
Format(s):
Medium: X
Location:
University of California, Santa Barbara
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Organometal halide perovskite light emitting diodes (LEDs) have attracted a lot of attention in recent years, owing to the rapid progress in device efficiency. However, their short operational lifetime severely impedes the practical uses of these devices. The operating stability of perovskite LEDs are due to degradation due to ambient environment and degradation during operation. The former can be suppressed by encapsulation while the latter one is the intrinsic degradation due to the electrochemical stability of the perovskite materials. In addition, perovskites also suffer from ion migration which is a major degradation mechanism in perovskite LEDs. In this review, we specifically focus on the operational stability of perovskite LEDs. The review is divided into two parts: the first part contains a summary of various degradation mechanisms and some insight on the degradation behavior and the second part is the strategies how to improve the operational stability, especially the strategies to suppress ion migration. Based on the current advances in the literature, we finally present our perspectives to improve the device stability. 
    more » « less
  2. This paper discusses the in-situ characterization tools designed to assess radiation tolerance and elemental migration in perovskite materials. With the increasing use of perovskites in various technological applications, understanding their response to radiation exposure is paramount. Ion Beam Induced Charge (IBIC) emerges as a powerful tool for investigating the radiation tolerance of perovskites at the microscale. By employing focused ion beams, IBIC allows for the spatial mapping of charge carriers, offering insights into the material's electronic response to radiation-induced defects. This technique enables researchers to pinpoint areas of enhanced or suppressed charge collection, providing valuable information on the perovskite's intrinsic properties under irradiation. Rutherford Backscattering Spectrometry (RBS) complements the study by offering a quantitative analysis of elemental migration in perovskite materials. Through the precise measurement of backscattered ions, RBS provides a detailed understanding of the elemental composition and distribution within the perovskite lattice after radiation exposure. The integration of IBIC and RBS techniques in in-situ experiments enhances the comprehensive characterization of radiation effects on perovskites. 
    more » « less
  3. Abstract Organic‐inorganic hybrid perovskite solar cells are susceptible to multiple influencing factors such as moisture, oxygen, heat stress, ion migration. Given the complex practical working conditions for solar cells, a fundamental question is how different failure mechanisms collaborate and substantially accelerate the device degradation. In this study, it is found that ion migration can accelerate the reaction between oxygen and methylammonium lead iodide perovskite in light conditions. This is suggested since regions with local electric fields suffer from more severe decomposition. Here it is reported that cesium ions (Cs+) incorporated in perovskite lattice, with a moderate doping concentration (e.g. 5%), can function as stabilizers to efficiently interrupt such a synergistic effect between oxygen induced degradation and ion migration while retaining the high performance of perovskite solar cells. Both experimental and theoretical results suggest that 5% Cs+ions incorporation simultaneously suppresses the formation of reactive superoxide ions () as well as ion migration in perovskites by forming additional energy barriers. This A‐site cations engineering is also a promising strategy to circumvent the detrimental effect of oxygen molecules in FA‐based perovskites, which is important for developing high‐efficiency perovskite solar cells with enhanced stability. 
    more » « less
  4. The light-emitting diodes (LEDs) used in indoor testing of perovskite solar cells do not expose them to the levels of ultraviolet (UV) radiation that they would receive in actual outdoor use. We report degradation mechanisms of p-i-n–structured perovskite solar cells under unfiltered sunlight and with LEDs. Weak chemical bonding between perovskites and polymer hole-transporting materials (HTMs) and transparent conducting oxides (TCOs) dominate the accelerated A-site cation migration, rather than direct degradation of HTMs. An aromatic phosphonic acid, [2-(9-ethyl-9H-carbazol-3-yl)ethyl]phosphonic acid (EtCz3EPA), enhanced bonding at the perovskite/HTM/TCO region with a phosphonic acid group bonded to TCOs and a nitrogen group interacting with lead in perovskites. A hybrid HTM of EtCz3EPA with strong hole-extraction polymers retained high efficiency and improved the UV stability of perovskite devices, and a champion perovskite minimodule—independently measured by the Perovskite PV Accelerator for Commercializing Technologies (PACT) center—retained operational efficiency of >16% after 29 weeks of outdoor testing. 
    more » « less
  5. null (Ed.)
    Hybrid organic inorganic perovskites have been considered as a potential candidate for the next generational solar cell due to their outstanding optoelectronic properties and rapid development in recent years. However, the biggest challenge to prevent them from massive commercial use is their long-term stability. Photoemission spectroscopy has been widely used to investigate properties of the perovskites, which provide critical insights to better understand the degradation mechanisms. In this article, we review mainly our photoemission studies on the degradation processes of perovskite thin films and single crystals with different environmental factors, such as gases, water, and light by monitoring changes of chemical composition and electronic structure. These studies on the effects by different environmental parameters are discussed for the understanding of the stability issues and the possible solutions. 
    more » « less