skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Materialistic: Selecting Similar Materials in Images
Separating an image into meaningful underlying components is a crucial first step for both editing and understanding images. We present a method capable of selecting the regions of a photograph exhibiting the same material as an artist-chosen area. Our proposed approach is robust to shading, specular highlights, and cast shadows, enabling selection in real images. As we do not rely on semantic segmentation (different woods or metal should not be selected together), we formulate the problem as a similarity-based grouping problem based on a user-provided image location. In particular, we propose to leverage the unsupervised DINO [Caron et al. 2021] features coupled with a proposed Cross-Similarity Feature Weighting module and an MLP head to extract material similarities in an image. We train our model on a new synthetic image dataset, that we release. We show that our method generalizes well to real-world images. We carefully analyze our model's behavior on varying material properties and lighting. Additionally, we evaluate it against a hand-annotated benchmark of 50 real photographs. We further demonstrate our model on a set of applications, including material editing, in-video selection, and retrieval of object photographs with similar materials.  more » « less
Award ID(s):
2019786
PAR ID:
10505452
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
42
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given a part design, the task of manufacturing process selection chooses an appropriate manufacturing process to fabricate it. Prior research has traditionally determined manufacturing processes through direct classification. However, an alternative approach to select a manufacturing process for a new design involves identifying previously produced parts with comparable shapes and materials and learning from them. Finding similar designs from a large dataset of previously manufactured parts is a challenging problem. To solve this problem, researchers have proposed different spatial and spectral shape descriptors to extract shape features including the D2 distribution, spherical harmonics (SH), and the Fast Fourier Transform (FFT), as well as the application of different machine learning methods on various representations of 3D part models like multi-view images, voxel, triangle mesh, and point cloud. However, there has not been a comprehensive analysis of these different shape descriptors, especially for part similarity search aimed at manufacturing process selection. To remedy this gap, this paper presents an in-depth comparative study of these shape descriptors for part similarity search. While we acknowledge the importance of factors like part size, tolerance, and cost in manufacturing process selection, this paper focuses on part shape and material properties only. Our findings show that SH performs the best among non-machine learning methods for manufacturing process selection, yielding 97.96% testing accuracy using the proposed quantitative evaluation metric. For machine learning methods, deep learning on multi-view image representations is best, yielding 99.85% testing accuracy when rotational invariance is not a primary concern. Deep learning on point cloud representations excels, yielding 99.44% testing accuracy when considering rotational invariance. 
    more » « less
  2. The success of image generative models has enabled us to build methods that can edit images based on text or other user input. However, these methods are bespoke, imprecise, require additional information, or are limited to only 2D image edits. We present GeoDiffuser, a zero-shot optimization-based method that unifies common 2D and 3D image-based object editing capabilities into a single method. Our key insight is to view image editing operations as geometric transformations. We show that these transformations can be directly incorporated into the attention layers in diffusion models to implicitly perform editing operations. Our training-free optimization method uses an objective function that seeks to preserve object style but generate plausible images, for instance with accurate lighting and shadows. It also inpaints disoccluded parts of the image where the object was originally located. Given a natural image and user input, we segment the foreground object using SAM and estimate a corresponding transform which is used by our optimization approach for editing. GeoDiffuser can perform common 2D and 3D edits like object translation, 3D rotation, and removal. We present quantitative results, including a perceptual study, that shows how our approach is better than existing methods. 
    more » « less
  3. Abstract Solar images observed in different channels with different instruments are crucial to the study of solar activity. However, the images have different fields of view, causing them to be misaligned. It is essential to accurately register the images for studying solar activity from multiple perspectives. Image registration is described as an optimizing problem from an image to be registered to a reference image. In this paper, we proposed a novel coarse-to-fine solar image registration method to register the multichannel solar images. In the coarse registration step, we used the regular step gradient descent algorithm as an optimizer to maximize the normalized cross correlation metric. The fine registration step uses the Powell–Brent algorithms as an optimizer and brings the Mattes mutual information similarity metric to the minimum. We selected five pairs of images with different resolutions, rotation angles, and shifts to compare and evaluate our results to those obtained by scale-invariant feature transform and phase correlation. The images are observed by the 1.6 m Goode Solar Telescope at Big Bear Solar Observatory and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Furthermore, we used the mutual information and registration time criteria to quantify the registration results. The results prove that the proposed method not only reaches better registration precision but also has better robustness. Meanwhile, we want to highlight that the method can also work well for the time-series solar image registration. 
    more » « less
  4. This paper introduces a new image smoothing filter based on a feed-forward convolutional neural network (CNN) in presence of impulse noise. This smoothing filter integrates a very deep architecture, a regularization method, and a batch normalization process. This fully integrated approach yields an effectively denoised and smoothed image yielding a high similarity measure with the original noise free image. Specific structural metrics are used to assess the denoising process and how effective was the removal of the impulse noise. This CNN model can also deal with other noise levels not seen during the training phase. The proposed CNN model is constructed through a 20-layer network using 400 images from the Berkeley Segmentation Dataset (BSD) in the training phase. Results are obtained using the standard testing set of 8 natural images not seen in the training phase. The merits of this proposed method are weighed in terms of high similarity measure and structural metrics that conform to the original image and compare favorably to the different results obtained using state-of-art denoising filters. 
    more » « less
  5. Abstract Despite the ubiquitous use of materials maps in modern rendering pipelines, their editing and control remains a challenge. In this paper, we present an example‐based material control method to augment input material maps based on user‐provided material photos. We train a tileable version of MaterialGAN and leverage its material prior to guide the appearance transfer, optimizing its latent space using differentiable rendering. Our method transfers the micro and meso‐structure textures of user provided target(s) photographs, while preserving the structure and quality of the input material. We show our methods can control existing material maps, increasing realism or generating new, visually appealing materials. 
    more » « less