Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by
Weakly electric Gymnotiform fishes use self-generated electric organ discharges (EODs) to navigate and communicate. The electrosensory range for these processes is a function of EOD amplitude, determined by the fish's electric organ (EO) output and the electrical conductivity of the surrounding water. Anthropogenic activity, such as deforestation, dams, and industrial/agricultural runoff, are known to increase water conductivity in neotropical habitats, likely reducing the electrosensory range of these fish. We investigated whether fish modulate EO output as means of re-expanding electrosensory range after a rapid increase in water conductivity in the pulse-type Brachyhypopomus gauderio and the wave-type Eigenmannia virescens. Furthermore, because EOD production incurs significant metabolic costs, we assessed whether such compensation is associated with an increase in metabolic rate. Following the conductivity increase B. gauderio increased EOD amplitude by 20.2±4.3% over six days but with no associated increase in metabolic rate, whereas the EOD amplitude of E. virescens remained constant, accompanied by an unexpected decrease in metabolic rate. Our results suggest that B. gauderio uses a compensation mechanism that requires no metabolic investment, such as impedance matching, or a physiological tradeoff wherein energy is diverted from other physiological processes to increase EO output. These divergent responses between species could be the result of differences in reproductive life history or evolutionary adaptations to different aquatic habitats. Continued investigation of electrosensory responses to changing water conditions will be essential for understanding the effects of anthropogenic disturbances on gymnotiforms, and potential physiological mechanisms for adapting to a rapidly changing aquatic environment.
more » « less- Award ID(s):
- 2021880
- PAR ID:
- 10505471
- Publisher / Repository:
- The Company of Biologists
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
c . 16% of fish species, an animal uses low‐frequency‐tuned ampullary electroreceptors to detect microvolt‐range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric‐organ discharge (EOD) and detecting distortions in the EOD‐associated field using high‐frequency‐tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic–electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non‐adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal‐receptor matching. -
Abstract Eugenol, the major active ingredient of clove oil, is widely used for anesthesia in fish. Yet virtually nothing is known about its effects on CNS functions, and thus about potential interference with neurophysiological experimentation. To address this issue, we employed a neuro-behavioral assay recently developed for testing of water-soluble anesthetic agents. The unique feature of this
in-vivo tool is that it utilizes a readily accessible behavior, the electric organ discharge (EOD), as a proxy of the neural activity generated by a brainstem oscillator, the pacemaker nucleus, in the weakly electric fishApteronotus leptorhynchus . A deep state of anesthesia, as assessed by the cessation of locomotor activity, was induced within less than 3 min at concentrations of 30–60 µL/L eugenol. This change in locomotor activity was paralleled by a dose-dependent, pronounced decrease in EOD frequency. After removal of the fish from the anesthetic solution, the frequency returned to baseline levels within 30 min. Eugenol also led to a significant increase in the rate of ‘chirps,’ specific amplitude/frequency modulations of the EOD, during the 30 min after the fish’s exposure to the anesthetic. At 60 µL/L, eugenol induced a collapse of the EOD amplitude after about 3.5 min in half of the fish tested. The results of our study indicate strong effects of eugenol on CNS functions. We hypothesize that these effects are mediated by the established pharmacological activity of eugenol to block the generation of action potentials and to reduce the excitability of neurons; as well as to potentiate GABAA-receptor responses. -
Abstract Salinity stress occurs when salt concentration in the environment changes rapidly, for example because of tidal water flow, rainstorms, drought, or evaporation from small bodies of water. However, gradual changes in salt concentration can also cause osmotic stress in aquatic habitats if levels breach thresholds that reduce the fitness of resident organisms. The latter scenario is exemplified by climate change driven salinization of estuaries and by dilution of ocean surface salinity through changes in the water cycle. In this review, we discuss how fish employ the evolutionarily conserved cellular stress response (CSR) to cope with these different forms of salinity stress. Macromolecular damage is identified as the cause of impaired physiological performance during salinity stress and serves as the signal for inducing a CSR. Basic aspects of the CSR have been observed in fish exposed to salinity stress, including repair and protection of cellular macromolecules, reallocation of energy, cell cycle arrest, and in severe cases, programmed cell death. Osmosensing and signal transduction events that regulate these aspects of the CSR provide a link between environmental salinity and adaptive physiological change required for survival. The CSR has evolved to broaden the range of salinities tolerated by certain euryhaline fish species, but is constrained in stenohaline species that are sensitive to changes in environmental salinity. Knowledge of how the CSR diverges between euryhaline and stenohaline fish enables understanding of physiological mechanisms that underlie salt tolerance and facilitates predictions as to the relative vulnerabilities of different fish species to a rapidly changing hydrosphere.
-
Arctic freshwater ecosystems and fish populations are largely shaped by seasonal and long‐term watershed hydrology. In this paper, we hypothesize how changing air temperature and precipitation will alter freeze and thaw processes, hydrology, and instream habitat to assess potential indirect effects, such as the change to the foraging and behavioral ecology, on Arctic fishes, using Broad Whitefish
Coregonus nasus as an indicator species. Climate change is expected to continue to alter hydrologic pathways, flow regimes, and, therefore, habitat suitability, connectivity, and availability for fishes. Warming and lengthening of the growing season will likely increase fish growth rates; however, the exceedance of threshold stream temperatures will likely increase physiological stress and alter life histories. We expect these changes to have mixed effects on Arctic subsistence fishes and fisheries. Management and conservation approaches focused on preserving the processes that create heterogeneity in aquatic habitats, genes, and communities will help maintain the resilience of Broad Whitefish and other important subsistence fisheries. Long‐term effects are uncertain, so filling scientific knowledge gaps, such as identifying important habitats or increasing knowledge of abiotic variables in priority watersheds, is key to understanding and potentially mitigating likely impacts to Arctic fishes in a rapidly changing landscape. -
Abstract Hibernation is widespread among mammals in a variety of environmental contexts. However, few experimental studies consider interspecific comparisons, which may provide insight into general patterns of hibernation strategies. We studied 13 species of free-living bats, including populations spread over thousands of kilometers and diverse habitats. We measured torpid metabolic rate (TMR) and evaporative water loss (two key parameters for understanding hibernation energetics) across a range of temperatures. There was no difference in minimum TMR among species (i.e., all species achieved similarly low torpid metabolic rate) but the temperature associated with minimum TMR varied among species. The minimum defended temperature (temperature below which TMR increased) varied from 8 °C to < 2 °C among species. Conversely, evaporative water loss varied among species, with species clustered in two groups representing high and low evaporative water loss. Notably, species that have suffered population declines due to white-nose syndrome fall in the high evaporative water loss group and less affected species in the low evaporative water loss group. Documenting general patterns of physiological diversity, and associated ecological implications, contributes to broader understanding of biodiversity, and may help predict which species are at greater risk of environmental and anthropogenic stressors.