skip to main content


Title: Supplementary Information: Mitigating Confirmation Bias in Semi-supervised Learning via Efficient Bayesian Model Averaging
State-of-the-art (SOTA) semi-supervised learning (SSL) methods have been highly successful in leveraging a mix of labeled and unlabeled data, often via self-training or pseudo-labeling. During pseudo-labeling, the model's predictions on unlabeled data are used for training and may result in confirmation bias where the model reinforces its own mistakes. In this work, we show that SOTA SSL methods often suffer from confirmation bias and demonstrate that this is often a result of using a poorly calibrated classifier for pseudo labeling. We introduce BaM-SSL, an efficient Bayesian Model averaging technique that improves uncertainty quantification in SSL methods with limited computational or memory overhead. We demonstrate that BaM-SSL mitigates confirmation bias in SOTA SSL methods across standard vision benchmarks of CIFAR-10, CIFAR-100, giving up to 16% improvement in test accuracy on the CIFAR-100 with 400 labels benchmark. Furthermore, we also demonstrate their effectiveness in additional realistic and challenging problems, such as class-imbalanced datasets and in photonics science.  more » « less
Award ID(s):
2019786
PAR ID:
10505512
Author(s) / Creator(s):
Publisher / Repository:
Journal on Machine Learning Research
Date Published:
Journal Name:
Transactions on Machine Learning Research
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Semi-supervised learning (SSL) is an appealing approach to resolve generalization problem for speech emotion recognition (SER) systems. By utilizing large amounts of unlabeled data, SSL is able to gain extra information about the prior distribution of the data. Typically, it can lead to better and robust recognition performance. Existing SSL approaches for SER include variations of encoder-decoder model structures such as autoencoder (AE) and variational autoencoders (VAEs), where it is difficult to interpret the learning mechanism behind the latent space. In this study, we introduce a new SSL framework, which we refer to as the DeepEmoCluster framework, for attribute-based SER tasks. The DeepEmoCluster framework is an end-to-end model with mel-spectrogram inputs, which combines a self-supervised pseudo labeling classification network with a supervised emotional attribute regressor. The approach encourages the model to learn latent representations by maximizing the emotional separation of K-means clusters. Our experimental results based on the MSP-Podcast corpus indicate that the DeepEmoCluster framework achieves competitive prediction performances in fully supervised scheme, outperforming baseline methods in most of the conditions. The approach can be further improved by incorporating extra unlabeled set. Moreover, our experimental results explicitly show that the latent clusters have emotional dependencies, enriching the geometric interpretation of the clusters. 
    more » « less
  2. Semi-supervised learning (SSL) is a key approach toward more data-efficient machine learning by jointly leverage both labeled and unlabeled data. We propose AlphaMatch, an efficient SSL method that leverages data augmentations, by efficiently enforcing the label consistency between the data points and the augmented data derived from them. Our key technical contribution lies on: 1) using alpha-divergence to prioritize the regularization on data with high confidence, achieving a similar effect as FixMatch but in a more flexible fashion, and 2) proposing an optimization-based, EM-like algorithm to enforce the consistency, which enjoys better convergence than iterative regularization procedures used in recent SSL methods such as FixMatch, UDA, and MixMatch. AlphaMatch is simple and easy to implement, and consistently outperforms prior arts on standard benchmarks, e.g. CIFAR-10, SVHN, CIFAR-100, STL-10. Specifically, we achieve 91.3 data per class, substantially improving over the previously best 88.7 achieved by FixMatch. 
    more » « less
  3. Published research highlights the presence of demographic bias in automated facial attribute classification. The proposed bias mitigation techniques are mostly based on supervised learning, which requires a large amount of labeled training data for generalizability and scalability. However, labeled data is limited, requires laborious annotation, poses privacy risks, and can perpetuate human bias. In contrast, self-supervised learning (SSL) capitalizes on freely available unlabeled data, rendering trained models more scalable and generalizable. However, these label-free SSL models may also introduce biases by sampling false negative pairs, especially at low-data regimes (< 200K images) under low compute settings. Further, SSL-based models may suffer from performance degradation due to a lack of quality assurance of the unlabeled data sourced from the web. This paper proposes a fully self-supervised pipeline for demographically fair facial attribute classifiers. Leveraging completely unlabeled data pseudolabeled via pre-trained encoders, diverse data curation techniques, and meta-learning-based weighted contrastive learning, our method significantly outperforms existing SSL approaches proposed for downstream image classification tasks. Extensive evaluations on the FairFace and CelebA datasets demonstrate the efficacy of our pipeline in obtaining fair performance over existing baselines. Thus, setting a new benchmark for SSL in the fairness of facial attribute classification. 
    more » « less
  4. Current leading mispronunciation detection and diagnosis (MDD) systems achieve promising performance via end-to-end phoneme recognition. One challenge of such end-to-end solutions is the scarcity of human-annotated phonemes on natural L2 speech. In this work, we leverage unlabeled L2 speech via a pseudo-labeling (PL) procedure and extend the fine-tuning approach based on pre-trained self-supervised learning (SSL) models. Specifically, we use Wav2vec 2.0 as our SSL model, and fine-tune it using original labeled L2 speech samples plus the created pseudo-labeled L2 speech samples. Our pseudo labels are dynamic and are produced by an ensemble of the online model on-the-fly, which ensures that our model is robust to pseudo label noise. We show that fine-tuning with pseudo labels achieves a 5.35% phoneme error rate reduction and 2.48% MDD F1 score improvement over a labeled-samples-only finetuning baseline. The proposed PL method is also shown to outperform conventional offline PL methods. Compared to the state-of-the-art MDD systems, our MDD solution produces a more accurate and consistent phonetic error diagnosis. In addition, we conduct an open test on a separate UTD-4Accents dataset, where our system recognition outputs show a strong correlation with human perception, based on accentedness and intelligibility. 
    more » « less
  5. Xu, Jinbo (Ed.)
    Abstract Motivation Cryo-Electron Tomography (cryo-ET) is a 3D bioimaging tool that visualizes the structural and spatial organization of macromolecules at a near-native state in single cells, which has broad applications in life science. However, the systematic structural recognition and recovery of macromolecules captured by cryo-ET are difficult due to high structural complexity and imaging limits. Deep learning-based subtomogram classification has played critical roles for such tasks. As supervised approaches, however, their performance relies on sufficient and laborious annotation on a large training dataset. Results To alleviate this major labeling burden, we proposed a Hybrid Active Learning (HAL) framework for querying subtomograms for labeling from a large unlabeled subtomogram pool. Firstly, HAL adopts uncertainty sampling to select the subtomograms that have the most uncertain predictions. This strategy enforces the model to be aware of the inductive bias during classification and subtomogram selection, which satisfies the discriminativeness principle in AL literature. Moreover, to mitigate the sampling bias caused by such strategy, a discriminator is introduced to judge if a certain subtomogram is labeled or unlabeled and subsequently the model queries the subtomogram that have higher probabilities to be unlabeled. Such query strategy encourages to match the data distribution between the labeled and unlabeled subtomogram samples, which essentially encodes the representativeness criterion into the subtomogram selection process. Additionally, HAL introduces a subset sampling strategy to improve the diversity of the query set, so that the information overlap is decreased between the queried batches and the algorithmic efficiency is improved. Our experiments on subtomogram classification tasks using both simulated and real data demonstrate that we can achieve comparable testing performance (on average only 3% accuracy drop) by using less than 30% of the labeled subtomograms, which shows a very promising result for subtomogram classification task with limited labeling resources. Availability and implementation https://github.com/xulabs/aitom. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less