skip to main content


Title: AlphaMatch: Improving Consistency for Semi-supervised Learning with Alpha-divergence
Semi-supervised learning (SSL) is a key approach toward more data-efficient machine learning by jointly leverage both labeled and unlabeled data. We propose AlphaMatch, an efficient SSL method that leverages data augmentations, by efficiently enforcing the label consistency between the data points and the augmented data derived from them. Our key technical contribution lies on: 1) using alpha-divergence to prioritize the regularization on data with high confidence, achieving a similar effect as FixMatch but in a more flexible fashion, and 2) proposing an optimization-based, EM-like algorithm to enforce the consistency, which enjoys better convergence than iterative regularization procedures used in recent SSL methods such as FixMatch, UDA, and MixMatch. AlphaMatch is simple and easy to implement, and consistently outperforms prior arts on standard benchmarks, e.g. CIFAR-10, SVHN, CIFAR-100, STL-10. Specifically, we achieve 91.3 data per class, substantially improving over the previously best 88.7 achieved by FixMatch.  more » « less
Award ID(s):
2041327 1846421 2037267
NSF-PAR ID:
10276242
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops (CVPR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Automated segmentation of grey matter (GM) and white matter (WM) in gigapixel histopathology images is advantageous to analyzing distributions of disease pathologies, further aiding in neuropathologic deep phenotyping. Although supervised deep learning methods have shown good performance, its requirement of a large amount of labeled data may not be cost-effective for large scale projects. In the case of GM/WM segmentation, trained experts need to carefully trace the delineation in gigapixel images. To minimize manual labeling, we consider semi-surprised learning (SSL) and deploy one state-of-the-art SSL method (FixMatch) on WSIs. Then we propose a two-stage scheme to further improve the performance of SSL: the first stage is a self-supervised module to train an encoder to learn the visual representations of unlabeled data, subsequently, this well-trained encoder will be an initialization of consistency loss-based SSL in the second stage. We test our method on Amyloid-β stained histopathology images and the results outperform FixMatch with the mean IoU score at around 2% by using 6,000 labeled tiles while over 10% by using only 600 labeled tiles from 2 WSIs.Clinical relevance— this work minimizes the required labeling efforts by trained personnel. An improved GM/WM segmentation method could further aid in the study of brain diseases, such as Alzheimer’s disease. 
    more » « less
  2. null (Ed.)
    Self-training is a standard approach to semi-supervised learning where the learner's own predictions on unlabeled data are used as supervision during training. In this paper, we reinterpret this label assignment process as an optimal transportation problem between examples and classes, wherein the cost of assigning an example to a class is mediated by the current predictions of the classifier. This formulation facilitates a practical annealing strategy for label assignment and allows for the inclusion of prior knowledge on class proportions via flexible upper bound constraints. The solutions to these assignment problems can be efficiently approximated using Sinkhorn iteration, thus enabling their use in the inner loop of standard stochastic optimization algorithms. We demonstrate the effectiveness of our algorithm on the CIFAR-10, CIFAR-100, and SVHN datasets in comparison with FixMatch, a state-of-the-art self-training algorithm. Our code is publicly available from github. 
    more » « less
  3. Modern machine learning algorithms typically require large amounts of labeled training data to fit a reliable model. To minimize the cost of data collection, researchers often employ techniques such as crowdsourcing and web scraping. However, web data and human annotations are known to exhibit high margins of error, resulting in sizable amounts of incorrect labels. Poorly labeled training data can cause models to overfit to the noise distribution, crippling performance in real-world applications. In this work, we investigate the viability of using data augmentation in conjunction with semi-supervised learning to improve the label noise robustness of image classification models. We conduct several experiments using noisy variants of the CIFAR-10 image classification dataset to benchmark our method against existing algorithms. Experimental results show that our augmentative SSL approach improves upon the state-of-the-art.

     
    more » « less
  4. Modern machine learning algorithms typically require large amounts of labeled training data to fit a reliable model. To minimize the cost of data collection, researchers often employ techniques such as crowdsourcing and web scraping. However, web data and human annotations are known to exhibit high margins of error, resulting in sizable amounts of incorrect labels. Poorly labeled training data can cause models to overfit to the noise distribution, crippling performance in real-world applications. In this work, we investigate the viability of using data augmentation in conjunction with semi-supervised learning to improve the label noise robustness of image classification models. We conduct several experiments using noisy variants of the CIFAR-10 image classification dataset to benchmark our method against existing algorithms. Experimental results show that our augmentative SSL approach improves upon the state-of-the-art. 
    more » « less
  5. Homomorphic Encryption (HE) based secure Neural Networks(NNs) inference is one of the most promising security solutions to emerging Machine Learning as a Service (MLaaS). In the HE-based MLaaS setting, a client encrypts the sensitive data, and uploads the encrypted data to the server that directly processes the encrypted data without decryption, and returns the encrypted result to the client. The clients' data privacy is preserved since only the client has the private key. Existing HE-enabled Neural Networks (HENNs), however, suffer from heavy computational overheads. The state-of-the-art HENNs adopt ciphertext packing techniques to reduce homomorphic multiplications by packing multiple messages into one single ciphertext. Nevertheless, rotations are required in these HENNs to implement the sum of the elements within the same ciphertext. We observed that HENNs have to pay significant computing overhead on rotations, and each of rotations is ∼10× more expensive than homomorphic multiplications between ciphertext and plaintext. So the massive rotations have become a primary obstacle of efficient HENNs. In this paper, we propose a fast, frequency-domain deep neural network called Falcon, for fast inferences on encrypted data. Falcon includes a fast Homomorphic Discrete Fourier Transform (HDFT) using block-circulant matrices to homomorphically support spectral operations. We also propose several efficient methods to reduce inference latency, including Homomorphic Spectral Convolution and Homomorphic Spectral Fully Connected operations by combing the batched HE and block-circulant matrices. Our experimental results show Falcon achieves the state-of-the-art inference accuracy and reduces the inference latency by 45.45%∼85.34% over prior HENNs on MNIST and CIFAR-10. 
    more » « less