skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptation and learning as strategies to maximize reward in neurofeedback tasks
Adaptation and learning have been observed to contribute to the acquisition of new motor skills and are used as strategies to cope with changing environments. However, it is hard to determine the relative contribution of each when executing goal directed motor tasks. This study explores the dynamics of neural activity during a center-out reaching task with continuous visual feedback under the influence of rotational perturbations Results for a brain-computer interface (BCI) task performed by two non-human primate (NHP) subjects are compared to simulations from a reinforcement learning agent performing an analogous task. We characterized baseline activity and compared it to the activity after rotational perturbations of different magnitudes were introduced. We employed principal component analysis (PCA) to analyze the spiking activity driving the cursor in the NHP BCI task as well as the activation of the neural network of the reinforcement learning agent. Results and discussionOur analyses reveal that both for the NHPs and the reinforcement learning agent, the task-relevant neural manifold is isomorphic with the task. However, for the NHPs the manifold is largely preserved for all rotational perturbations explored and adaptation of neural activity occurs within this manifold as rotations are compensated by reassignment of regions of the neural space in an angular pattern that cancels said rotations. In contrast, retraining the reinforcement learning agent to reach the targets after rotation results in substantial modifications of the underlying neural manifold. Our findings demonstrate that NHPs adapt their existing neural dynamic repertoire in a quantitatively precise manner to account for perturbations of different magnitudes and they do so in a way that obviates the need for extensive learning.  more » « less
Award ID(s):
2145412
PAR ID:
10505585
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Frontiers for Human Neuroscience
Date Published:
Journal Name:
Frontiers in Human Neuroscience
Volume:
18
ISSN:
1662-5161
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we investigate a design approach of reinforcement learning to engineer a gyroscope in an optical lattice for the inertial sensing of rotations. Our methodology is not based on traditional atom interferometry, that is, splitting, reflecting, and recombining wavefunction components. Instead, the learning agent is assigned the task of generating lattice shaking sequences that optimize the sensitivity of the gyroscope to rotational signals in an end-to-end design philosophy. What results is an interference device that is completely distinct from the familiar Mach-Zehnder-type interferometer. For the same total interrogation time, the end-to-end design leads to a twentyfold improvement in sensitivity over traditional Bragg interferometry. Published by the American Physical Society2024 
    more » « less
  2. Recent work characterized shifts in preparatory activity of the motor cortex during motor learning. The specific shift geometry during learning, washout, and relearning blocks was hypothesized to implement the acquisition, retention, and retrieval of motor memories. We sought to train recurrent neural network (RNN) models that could be used to study these motor learning phenomena. We built an environment for a curl field (CF) motor learning task and trained RNNs with reinforcement learning (RL) with novel regularization terms to perform behaviorally realistic reaching trajectories over the course of learning. Our choice of RL over supervised learning was motivated by the idea that motor adaptation, in the absence of demonstrations, is a process of reoptimization. We find these models, despite lack of supervision, reproduce many behavioral findings from monkey CF adaptation experiments. These models also captured key neurophysiological findings.We found that the model’s preparatory activity existed in a force-predictive subspace that remained stable across learning, washout, and relearning. Additionally, preparatory activity shifted uniformly, independently of the distance to the CF trained target. Finally, we found that the washout shift became more orthogonal to the learning shift, and hence more brain-like, when the RNNs were pretrained to have prior experience with CF dynamics. We argue the increased fit to neurophysiological recordings is driven by more generalizable and structured dynamical motifs in the model with more prior experience. This suggests that prior experience could organize preparatory neural activity underlying motor memory to have more orthogonal characteristics, by forming structured dynamical motifs in the motor cortex circuitry. 
    more » « less
  3. Abstract Objective. Decoding neural activity from ventral (speech) motor cortex is known to enable high-performance speech brain-computer interface (BCI) control. It was previously unknown whether this brain area could also enable computer control via neural cursor and click, as is typically associated with dorsal (arm and hand) motor cortex. Approach. We recruited a clinical trial participant with ALS and implanted intracortical microelectrode arrays in ventral precentral gyrus (vPCG), which the participant used to operate a speech BCI in a prior study. We developed a cursor BCI driven by the participant’s vPCG neural activity, and evaluated performance on a series of target selection tasks. Main results. The reported vPCG cursor BCI enabled rapidly-calibrating (40 seconds), accurate (2.90 bits per second) cursor control and click. The participant also used the BCI to control his own personal computer independently. Significance. These results suggest that placing electrodes in vPCG to optimize for speech decoding may also be a viable strategy for building a multi-modal BCI which enables both speech-based communication and computer control via cursor and click. (BrainGate2 ClinicalTrials.gov ID NCT00912041) 
    more » « less
  4. Abstract Mesoscopic calcium imaging enables studies of cell-type specific neural activity over large areas. A growing body of literature suggests that neural activity can be different when animals are free to move compared to when they are restrained. Unfortunately, existing systems for imaging calcium dynamics over large areas in non-human primates (NHPs) are table-top devices that require restraint of the animal’s head. Here, we demonstrate an imaging device capable of imaging mesoscale calcium activity in a head-unrestrained male non-human primate. We successfully miniaturize our system by replacing lenses with an optical mask and computational algorithms. The resulting lensless microscope can fit comfortably on an NHP, allowing its head to move freely while imaging. We are able to measure orientation columns maps over a 20 mm2field-of-view in a head-unrestrained macaque. Our work establishes mesoscopic imaging using a lensless microscope as a powerful approach for studying neural activity under more naturalistic conditions. 
    more » « less
  5. Reinforcement Learning (RL) algorithms are often known for sample inefficiency and difficult generalization. Recently, Unsupervised Environment Design (UED) emerged as a new paradigm for zero-shot generalization by simultaneously learning a task distribution and agent policies on the generated tasks. This is a non-stationary process where the task distribution evolves along with agent policies; creating an instability over time. While past works demonstrated the potential of such approaches, sampling effectively from the task space remains an open challenge, bottlenecking these approaches. To this end, we introduce CLUTR: a novel unsupervised curriculum learning algorithm that decouples task representation and curriculum learning into a two-stage optimization. It first trains a recurrent variational autoencoder on randomly generated tasks to learn a latent task manifold. Next, a teacher agent creates a curriculum by maximizing a minimax REGRET-based objective on a set of latent tasks sampled from this manifold. Using the fixed-pretrained task manifold, we show that CLUTR successfully overcomes the non-stationarity problem and improves stability. Our experimental results show CLUTR outperforms PAIRED, a principled and popular UED method, in the challenging CarRacing and navigation environments: achieving 10.6X and 45% improvement in zero-shot generalization, respectively. CLUTR also performs comparably to the non-UED state-of-the-art for CarRacing, while requiring 500X fewer environment interactions. We open source our code at https://github.com/clutr/clutr. 
    more » « less