skip to main content

This content will become publicly available on June 1, 2025

Title: The digital health divide: Understanding telehealth adoption across racial lines in rural Illinois
Due to long-standing barriers to healthcare access in rural areas, telehealth has been promoted as an effective means of delivering healthcare services. However, there is a general absence of quantitative data showing how geographic residence and race affect telehealth adoption. This study examines variations in telehealth adoption based on race and geographic residence in Southern Illinois using a mail survey. It finds that residents of urban Carbondale, compared to those in rural Cairo, have better access to broadband and are more likely to use telehealth. Respondents significantly differ from each other based on their geographic location of residence and race when it came to using telehealth to save money on travel and to save money on childcare. A significant barrier to telehealth adoption identified across all groups is privacy protection concern. The findings highlight the crucial role of broadband infrastructure in healthcare access and the need for trust in telehealth systems to ensure data privacy.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Date Published:
Journal Name:
SSM - Population Health
Page Range / eLocation ID:
Subject(s) / Keyword(s):
Broadband Cairo Inequalities Trust Race
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ramsey, Doug (Ed.)
    This study delves into the adoption and challenges of telehealth services in rural settings, examining racial and locational influences on usage. Employing qualitative methods, it draws on 30 detailed interviews with both healthcare providers and patients in two racially diverse, economically disadvantaged towns in Southern Illinois from fall 2021 to spring 2023. Our findings indicate that insufficient internet access and lack of necessary devices are significant factors in the reluctance of rural residents to embrace telehealth services. Additionally, this study reveals a major barrier: a deep-seated mistrust in the telehealth infrastructure's ability to safeguard private medical information. Notably, our results show that Black participants have heightened concerns regarding the health care industry's capacity to maintain the confidentiality of their medical data. 
    more » « less
  2. The past decade has seen a rise in the availability of modern information and communication technologies (ICTs) for developing smart societies and communities. However, the smart divide, characterized by inequalities in ICT infrastructures, software access, and individual capabilities, remains a significant barrier for rural communities. Limited empirical studies exist that explore what and how ICT infrastructures can be developed to bridge the smart divide. The paper aimed to address rural broadband access in the context of infrastructural dimensions of smart divide (i.e., smart infrastructural divide) in the United States, focusing on the wireless network infrastructure’s role in narrowing the gap. It examined the broadband specifications needed for smart applications like smart education and telehealth, emphasizing the importance of wireless network capabilities. While fixed broadband offers higher speeds, wireless networks can support many smart applications with decent flexibility and ease of access. To further understand the implications of wireless broadband to rural communities, we conducted a case study in Carbondale and Cairo, two rural towns in Southern Illinois, using on-site user-inspired speed testing. An Android application was developed to measure download/upload speeds and Reference Signal Received Power (RSRP) for broadband quality. Results suggest both Carbondale and Cairo experienced below-average speeds with high variability among census blocks, which highlights the need for improved wireless network infrastructure. The paper culminated in the technological and policy recommendations to narrow down the smart infrastructural divide. 
    more » « less
  3. Abstract

    CDC WONDER is a web-based tool for the dissemination of epidemiologic data collected by the National Vital Statistics System. While CDC WONDER has built-in privacy protections, they do not satisfy formal privacy protections such as differential privacy and thus are susceptible to targeted attacks. Given the importance of making high-quality public health data publicly available while preserving the privacy of the underlying data subjects, we aim to improve the utility of a recently developed approach for generating Poisson-distributed, differentially private synthetic data by using publicly available information to truncate the range of the synthetic data. Specifically, we utilize county-level population information from the US Census Bureau and national death reports produced by the CDC to inform prior distributions on county-level death rates and infer reasonable ranges for Poisson-distributed, county-level death counts. In doing so, the requirements for satisfying differential privacy for a given privacy budget can be reduced by several orders of magnitude, thereby leading to substantial improvements in utility. To illustrate our proposed approach, we consider a dataset comprised of over 26,000 cancer-related deaths from the Commonwealth of Pennsylvania belonging to over 47,000 combinations of cause-of-death and demographic variables such as age, race, sex, and county-of-residence and demonstrate the proposed framework’s ability to preserve features such as geographic, urban/rural, and racial disparities present in the true data.

    more » « less
  4. Background

    Rural and remote communities were especially vulnerable to the COVID-19 pandemic due to the availability and capacity of rural health services. Research has found that key issues surrounded (1) the lack of staff, (2) the need for coordinated health services, and (3) operational and facility issues. Similarly, research also confirms that irrespective of hospital capacity issues existing during crisis, compared to urban communities, rural communities typically face poorer access to health services. Telehealth programs have long held promise for addressing health disparities perpetuated by inadequate health care access. In response to the current COVID-19 pandemic, Adventist Health Saint Helena Hospital, a rural hospital in northern California, urgently worked to expand telehealth services. However, as Adventist Health Saint Helena Hospital is the longest-serving rural hospital in the state of California, administrators were also able to draw on experiences from the pandemic of 1918/1919. Understanding their historically rural and heavily Latino populations, their telehealth approach was coupled with cultural approaches for prioritizing socially responsive and equitable access to health services.


    This study aimed to present one rural community’s holistic sociotechnical response to COVID-19 in redesigning their health care delivery approach. Redesign efforts included the expansion of digital health services coupled with county-wide collaborations for nondigital mobile health centers, testing, and vaccination clinics to meet the needs of those with limited digital access and language barriers.


    We present data on telehealth services for maintaining critical care services and a framework on the feasibility of private-public partnerships to address COVID-19 challenges.


    In this paper, we provide a critical review of how a rural hospital adapted its health care approach to incorporate telehealth services and distance services to meet the needs of a diverse population.


    This paper contributes empirical data on how rural communities can use telehealth technologies and community partnerships for a holistic community approach to meet health needs during a natural disaster.

    Conflicts of Interest

    None declared.

    more » « less
  5. The rapid adoption of Internet-of-Medical-Things (IoMT) has revolutionized e-health systems, particularly in remote patient monitoring. With the growing adoption of Internet-of-Medical-Things (IoMT) in delivering technologically advanced health services, the security of Medtronic devices is pivotal as the security and privacy of data from these devices are directly related to patient safety. PUF has been the most widely adopted hardware security primitive which has been successfully integrated with various Internet-of-Things (IoT) based applications, particularly in smart healthcare for facilitating device security. To facilitate security and access control to IoMT devices, this work proposes a novel cybersecurity solution using PUF for facilitating global access to IoMT devices. The proposed framework presents an approach that enables the patient’s body area network devices supported by PUF to be securely accessible and controllable globally. The proposed cybersecurity solution has been experimentally validated using state-of-the-art SRAM PUF, a delay based PUF, and a trusted platform module (TPM) primitive. 
    more » « less