skip to main content


This content will become publicly available on June 1, 2025

Title: The digital health divide: Understanding telehealth adoption across racial lines in rural Illinois
Due to long-standing barriers to healthcare access in rural areas, telehealth has been promoted as an effective means of delivering healthcare services. However, there is a general absence of quantitative data showing how geographic residence and race affect telehealth adoption. This study examines variations in telehealth adoption based on race and geographic residence in Southern Illinois using a mail survey. It finds that residents of urban Carbondale, compared to those in rural Cairo, have better access to broadband and are more likely to use telehealth. Respondents significantly differ from each other based on their geographic location of residence and race when it came to using telehealth to save money on travel and to save money on childcare. A significant barrier to telehealth adoption identified across all groups is privacy protection concern. The findings highlight the crucial role of broadband infrastructure in healthcare access and the need for trust in telehealth systems to ensure data privacy.  more » « less
Award ID(s):
2122092
NSF-PAR ID:
10505671
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
SSM - Population Health
Volume:
26
ISSN:
2352-8273
Page Range / eLocation ID:
101665
Subject(s) / Keyword(s):
["Broadband","Cairo","Inequalities","Trust","Race"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Telehealth technologies play a vital role in delivering quality healthcare to patients regardless of geographic location and health status. Use of telehealth peripherals allow providers a more accurate method of collecting health assessment data from the patient and delivering a more confident and accurate diagnosis, saving not only time and money but creating positive patient outcomes. Advanced Practice Nursing (APN) students should be confident in their ability to diagnose and treat patients through a virtual environment. This pilot simulation was completed to help examine how APN students interacted in a simulation-based education (SBE) experience with and without peripherals, funded by the National Science Foundation’s Future of Work at the Human-Technology Frontier (FW-HTF) program. The SBE experience was created and deployed using the INACSL Healthcare Simulation Standards of Best PracticesTM and vetted by a simulation expert. APN students (N = 24), in their first assessment course, were randomly selected to be either a patient (n = 12) or provider (n = 12) in a telehealth simulation. Student dyads (patient/provider) were randomly placed to complete a scenario with (n = 6 dyads) or without (n = 6 dyads) the use of a peripheral. Students (providers and patients) who completed the SBE experience had an increased confidence level both with and without the use of peripherals. Students evaluated the simulation via the Simulation Effectiveness Tool-Modified (SET-M), and scored their perception of the simulation on a 1 to 5 point Likert Scale. The highest scoring areas were perceived support of learning by the faculty (M=4.6), feeling challenged in decision-making skills (M=4.4), and a better understanding of didactic material (M=4.3). The lowest scoring area was feeling more confident in decision making (M=3.9). We also recorded students’ facial expressions during the task to determine a probability score (0- 100) for expressed basic emotions, and results revealed that students had the highest scores for joy (M = 8.47) and surprise (M = 4.34), followed by disgust (M = 1.43), fear (M = .76), and contempt (M = .64); and had the lowest scores of anger (M = .44) and sadness (M = .36). Students were also asked to complete a reflection assignment as part of the SBE experience. Students reported feeling nervous at the beginning of the SBE experience, but acknowledged feeling better as the SBE experience unfolded. Based on findings from this pilot study, implications point towards the effectiveness of including simulations for nurse practitioner students to increase their confidence in performing telehealth visits and engaging in decision making. For the students, understanding that patients may be just as nervous during telehealth visits was one of the main takeaways from the experience, as well as remembering to reassure the patient and how to ask the patient to work the telehealth equipment. Therefore, providing students opportunities to practice these skills will help increase their confidence, boost their self- and emotion regulation, and improve their decision-making skills in telehealth scenarios. 
    more » « less
  2. Abstract

    CDC WONDER is a web-based tool for the dissemination of epidemiologic data collected by the National Vital Statistics System. While CDC WONDER has built-in privacy protections, they do not satisfy formal privacy protections such as differential privacy and thus are susceptible to targeted attacks. Given the importance of making high-quality public health data publicly available while preserving the privacy of the underlying data subjects, we aim to improve the utility of a recently developed approach for generating Poisson-distributed, differentially private synthetic data by using publicly available information to truncate the range of the synthetic data. Specifically, we utilize county-level population information from the US Census Bureau and national death reports produced by the CDC to inform prior distributions on county-level death rates and infer reasonable ranges for Poisson-distributed, county-level death counts. In doing so, the requirements for satisfying differential privacy for a given privacy budget can be reduced by several orders of magnitude, thereby leading to substantial improvements in utility. To illustrate our proposed approach, we consider a dataset comprised of over 26,000 cancer-related deaths from the Commonwealth of Pennsylvania belonging to over 47,000 combinations of cause-of-death and demographic variables such as age, race, sex, and county-of-residence and demonstrate the proposed framework’s ability to preserve features such as geographic, urban/rural, and racial disparities present in the true data.

     
    more » « less
  3. Ramsey, Doug (Ed.)
    This study delves into the adoption and challenges of telehealth services in rural settings, examining racial and locational influences on usage. Employing qualitative methods, it draws on 30 detailed interviews with both healthcare providers and patients in two racially diverse, economically disadvantaged towns in Southern Illinois from fall 2021 to spring 2023. Our findings indicate that insufficient internet access and lack of necessary devices are significant factors in the reluctance of rural residents to embrace telehealth services. Additionally, this study reveals a major barrier: a deep-seated mistrust in the telehealth infrastructure's ability to safeguard private medical information. Notably, our results show that Black participants have heightened concerns regarding the health care industry's capacity to maintain the confidentiality of their medical data. 
    more » « less
  4. The past decade has seen a rise in the availability of modern information and communication technologies (ICTs) for developing smart societies and communities. However, the smart divide, characterized by inequalities in ICT infrastructures, software access, and individual capabilities, remains a significant barrier for rural communities. Limited empirical studies exist that explore what and how ICT infrastructures can be developed to bridge the smart divide. The paper aimed to address rural broadband access in the context of infrastructural dimensions of smart divide (i.e., smart infrastructural divide) in the United States, focusing on the wireless network infrastructure’s role in narrowing the gap. It examined the broadband specifications needed for smart applications like smart education and telehealth, emphasizing the importance of wireless network capabilities. While fixed broadband offers higher speeds, wireless networks can support many smart applications with decent flexibility and ease of access. To further understand the implications of wireless broadband to rural communities, we conducted a case study in Carbondale and Cairo, two rural towns in Southern Illinois, using on-site user-inspired speed testing. An Android application was developed to measure download/upload speeds and Reference Signal Received Power (RSRP) for broadband quality. Results suggest both Carbondale and Cairo experienced below-average speeds with high variability among census blocks, which highlights the need for improved wireless network infrastructure. The paper culminated in the technological and policy recommendations to narrow down the smart infrastructural divide. 
    more » « less
  5. This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber–physical systems (H-CPSs). Healthcare systems around the world have undergone massive technological transformation and have seen growing adoption with the advancement of Internet-of-Medical Things (IoMT). The technological transformation of healthcare systems to telemedicine, e-health, connected health, and remote health is being made possible with the sophisticated integration of IoMT with machine learning, big data, artificial intelligence (AI), and other technologies. As healthcare systems are becoming more accessible and advanced, security and privacy have become pivotal for the smooth integration and functioning of various systems in H-CPSs. In this work, we present a novel approach that integrates PUF with IOTA Tangle and blockchain and works by storing the PUF keys of a patient’s Body Area Network (BAN) inside blockchain to access, store, and share globally. Each patient has a network of smart wearables and a gateway to obtain the physiological sensor data securely. To facilitate communication among various stakeholders in healthcare systems, IOTA Tangle’s Masked Authentication Messaging (MAM) communication protocol has been used, which securely enables patients to communicate, share, and store data on Tangle. The MAM channel works in the restricted mode in the proposed architecture, which can be accessed using the patient’s gateway PUF key. Furthermore, the successful verification of PUF enables patients to securely send and share physiological sensor data from various wearable and implantable medical devices embedded with PUF. Finally, healthcare system entities like physicians, hospital admin networks, and remote monitoring systems can securely establish communication with patients using MAM and retrieve the patient’s BAN PUF keys from the blockchain securely. Our experimental analysis shows that the proposed approach successfully integrates three security primitives, PUF, blockchain, and Tangle, providing decentralized access control and security in H-CPS with minimal energy requirements, data storage, and response time. 
    more » « less