The aims of this paper are to investigate and propose a numerical approximation for a quenching type diffusion problem associated with a two-sided Riemann-Liouville space- fractional derivative. The approach adopts weighted Grünwald formulas for suitable spatial discretization. An implicit Crank-Nicolson scheme combined with adaptive technology is then implemented for a temporal integration. Monotonicity, positivity preservation and linearized stability are proved under suitable constraints on spatial and temporal discretization parameters. Two specially designed simulation experiments are presented for illustrating and outreaching properties of the numerical method constructed. Connections between the two-sided fractional differential operator and critical values including quenching time, critical length and quenching location are investigated. 
                        more » 
                        « less   
                    
                            
                            A semi-adaptive preservative scheme for a fractional quenching convective-diffusion problem
                        
                    
    
            A preservative scheme is presented and analyzed for the solution of a quenching type convective-diffusion problem modeled through one-sided Riemann-Liouville space-fractional derivatives. Properly weighted Grünwald formulas are employed for the discretization of the fractional derivative. A forward difference approximation is considered in the approximation of the convective term of the nonlinear equation. Temporal steps are optimized via an asymptotic arc-length monitoring mechanism till the quenching point. Under suitable constraints on spatial-temporal discretization steps, the monotonicity, positivity preservations of the numerical solution and numerical stability of the scheme are proved. Three numerical experiments are designed to demonstrate and simulate key characteristics of the semi-adaptive scheme constructed, including critical length, quenching time and quenching location of the fractional quenching phenomena formulated through the one-sided space-fractional convective-diffusion initial-boundary value problem. Effects of the convective function to quenching are discussed. Numerical estimates of the order of convergence are obtained. Computational results obtained are carefully compared with those acquired from conventional integer order quenching convection-diffusion problems for validating anticipated accuracy. The experiments have demonstrated expected accuracy and feasibility of the new method. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2318032
- PAR ID:
- 10505724
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Computers & Mathematics with Applications
- Volume:
- 151
- Issue:
- C
- ISSN:
- 0898-1221
- Page Range / eLocation ID:
- 288 to 299
- Subject(s) / Keyword(s):
- Quenching problems, Singularity, Riemann-Liouville fractional derivatives, Preservative schemes, Numerical stability
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            na (Ed.)This paper investigates quenching solutions of an one-dimensional, two-sided Riemann–Liouville fractional order convection–diffusion problem. Fractional order spatial derivatives are discretized using weighted averaging approximations in conjunction with standard and shifted Grünwald formulas. The advective term is handled utilizing a straightforward Euler formula, resulting in a semi-discretized system of nonlinear ordinary differential equations. The conservativeness of the proposed scheme is rigorously proved and validated through simulation experiments. The study is further advanced to a fully discretized, semi-adaptive finite difference method. Detailed analysis is implemented for the monotonicity, positivity and stability of the scheme. Investigations are carried out to assess the potential impacts of the fractional order on quenching location, quenching time, and critical length. The computational results are thoroughly discussed and analyzed, providing a more comprehensive understanding of the quenching phenomena modeled through two-sided fractional order convection-diffusion problems.more » « less
- 
            null (Ed.)Abstract Variable-order space-fractional diffusion equations provide very competitive modeling capabilities of challenging phenomena, including anomalously superdiffusive transport of solutes in heterogeneous porous media, long-range spatial interactions and other applications, as well as eliminating the nonphysical boundary layers of the solutions to their constant-order analogues.In this paper, we prove the uniqueness of determining the variable fractional order of the homogeneous Dirichlet boundary-value problem of the one-sided linear variable-order space-fractional diffusion equation with some observed values of the unknown solutions near the boundary of the spatial domain.We base on the analysis to develop a spectral-Galerkin Levenberg–Marquardt method and a finite difference Levenberg–Marquardt method to numerically invert the variable order.We carry out numerical experiments to investigate the numerical performance of these methods.more » « less
- 
            This paper is concerned with the numerical solution of the flow problem in a fractured porous medium where the fracture is treated as a lower dimensional object embedded in the rock matrix. We consider a space-time mixed variational formulation of such a reduced fracture model with mixed finite element approximations in space and discontinuous Galerkin discretization in time. Different spatial and temporal grids are used in the subdomains and in the fracture to adapt to the heterogeneity of the problem. Analysis of the numerical scheme, including well-posedness of the discrete problem, stability and a priori error estimates, is presented. Using substructuring techniques, the coupled subdomain and fracture system is reduced to a space-time interface problem which is solved iteratively by GMRES. Each GMRES iteration involves solution of time-dependent problems in the subdomains using the method of lines with local spatial and temporal discretizations. The convergence of GMRES is proved by using the field-of-values analysis and the properties of the discrete space-time interface operator. Numerical experiments are carried out to illustrate the performance of the proposed iterative algorithm and the accuracy of the numerical solution.more » « less
- 
            We develop a convergent reaction-drift-diffusion master equation (CRDDME) to facilitate the study of reaction processes in which spatial transport is influenced by drift due to one-body potential fields within general domain geometries. The generalized CRDDME is obtained through two steps. We first derive an unstructured grid jump process approximation for reversible diffusions, enabling the simulation of drift-diffusion processes where the drift arises due to a conservative field that biases particle motion. Leveraging the Edge-Averaged Finite Element method, our approach preserves detailed balance of drift-diffusion fluxes at equilibrium, and preserves an equilibrium Gibbs-Boltzmann distribution for particles undergoing drift-diffusion on the unstructured mesh. We next formulate a spatially-continuous volume reactivity particle-based reaction-drift-diffusion model for reversible reactions of the form A + B <–> C. A finite volume discretization is used to generate jump process approximations to reaction terms in this model. The discretization is developed to ensure the combined reaction-drift-diffusion jump process approximation is consistent with detailed balance of reaction fluxes holding at equilibrium, along with supporting a discrete version of the continuous equilibrium state. The new CRDDME model represents a continuous-time discrete-space jump process approximation to the underlying volume reactivity model. We demonstrate the convergence and accuracy of the new CRDDME through a number of numerical examples, and illustrate its use on an idealized model for membrane protein receptor dynamics in T cell signaling.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    