skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A simulation expressivity of the quenching phenomenon in a two-sided space-fractional diffusion equation
The aims of this paper are to investigate and propose a numerical approximation for a quenching type diffusion problem associated with a two-sided Riemann-Liouville space- fractional derivative. The approach adopts weighted Grünwald formulas for suitable spatial discretization. An implicit Crank-Nicolson scheme combined with adaptive technology is then implemented for a temporal integration. Monotonicity, positivity preservation and linearized stability are proved under suitable constraints on spatial and temporal discretization parameters. Two specially designed simulation experiments are presented for illustrating and outreaching properties of the numerical method constructed. Connections between the two-sided fractional differential operator and critical values including quenching time, critical length and quenching location are investigated.  more » « less
Award ID(s):
2318032
PAR ID:
10505725
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Applied Mathematics and Computation
Volume:
437
Issue:
C
ISSN:
0096-3003
Page Range / eLocation ID:
127523
Subject(s) / Keyword(s):
Nonlinear quenching problems, Two-sided Riemann-Liouville space-fractional derivatives, Mesh adaptation, Stability, Positivity, Monotonicity
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A preservative scheme is presented and analyzed for the solution of a quenching type convective-diffusion problem modeled through one-sided Riemann-Liouville space-fractional derivatives. Properly weighted Grünwald formulas are employed for the discretization of the fractional derivative. A forward difference approximation is considered in the approximation of the convective term of the nonlinear equation. Temporal steps are optimized via an asymptotic arc-length monitoring mechanism till the quenching point. Under suitable constraints on spatial-temporal discretization steps, the monotonicity, positivity preservations of the numerical solution and numerical stability of the scheme are proved. Three numerical experiments are designed to demonstrate and simulate key characteristics of the semi-adaptive scheme constructed, including critical length, quenching time and quenching location of the fractional quenching phenomena formulated through the one-sided space-fractional convective-diffusion initial-boundary value problem. Effects of the convective function to quenching are discussed. Numerical estimates of the order of convergence are obtained. Computational results obtained are carefully compared with those acquired from conventional integer order quenching convection-diffusion problems for validating anticipated accuracy. The experiments have demonstrated expected accuracy and feasibility of the new method. 
    more » « less
  2. na (Ed.)
    This paper investigates quenching solutions of an one-dimensional, two-sided Riemann–Liouville fractional order convection–diffusion problem. Fractional order spatial derivatives are discretized using weighted averaging approximations in conjunction with standard and shifted Grünwald formulas. The advective term is handled utilizing a straightforward Euler formula, resulting in a semi-discretized system of nonlinear ordinary differential equations. The conservativeness of the proposed scheme is rigorously proved and validated through simulation experiments. The study is further advanced to a fully discretized, semi-adaptive finite difference method. Detailed analysis is implemented for the monotonicity, positivity and stability of the scheme. Investigations are carried out to assess the potential impacts of the fractional order on quenching location, quenching time, and critical length. The computational results are thoroughly discussed and analyzed, providing a more comprehensive understanding of the quenching phenomena modeled through two-sided fractional order convection-diffusion problems. 
    more » « less
  3. null (Ed.)
    Abstract Variable-order space-fractional diffusion equations provide very competitive modeling capabilities of challenging phenomena, including anomalously superdiffusive transport of solutes in heterogeneous porous media, long-range spatial interactions and other applications, as well as eliminating the nonphysical boundary layers of the solutions to their constant-order analogues.In this paper, we prove the uniqueness of determining the variable fractional order of the homogeneous Dirichlet boundary-value problem of the one-sided linear variable-order space-fractional diffusion equation with some observed values of the unknown solutions near the boundary of the spatial domain.We base on the analysis to develop a spectral-Galerkin Levenberg–Marquardt method and a finite difference Levenberg–Marquardt method to numerically invert the variable order.We carry out numerical experiments to investigate the numerical performance of these methods. 
    more » « less
  4. Abstract We investigate the temporal accuracy of two generalized‐ schemes for the incompressible Navier‐Stokes equations. In a widely‐adopted approach, the pressure is collocated at the time steptn + 1while the remainder of the Navier‐Stokes equations is discretized following the generalized‐ scheme. That scheme has been claimed to besecond‐order accurate in time. We developed a suite of numerical code using inf‐sup stable higher‐order non‐uniform rational B‐spline (NURBS) elements for spatial discretization. In doing so, we are able to achieve high spatial accuracy and to investigate asymptotic temporal convergence behavior. Numerical evidence suggests that onlyfirst‐order accuracyis achieved, at least for the pressure, in this aforesaid temporal discretization approach. On the other hand, evaluating the pressure at the intermediate time step recovers second‐order accuracy, and the numerical implementation is simplified. We recommend this second approach as the generalized‐ scheme of choice when integrating the incompressible Navier‐Stokes equations. 
    more » « less
  5. In this paper, we develop an efficient numerical scheme for solving one-dimensional hyperbolic interface problems. The immersed finite element (IFE) method is used for spatial discretization, which allows the solution mesh to be independent of the interface. Consequently, a fixed uniform mesh can be used throughout the entire simulation. The method of lines is used for temporal discretization. Numerical experiments are provided to show the features of these new methods. 
    more » « less