skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Decreasing the mean subtree order by adding k edges
Abstract Themean subtree orderof a given graph , denoted , is the average number of vertices in a subtree of . Let be a connected graph. Chin et al. conjectured that if is a proper spanning supergraph of , then . Cameron and Mol disproved this conjecture by showing that there are infinitely many pairs of graphs and with , and such that . They also conjectured that for every positive integer , there exists a pair of graphs and with , , and such that . Furthermore, they proposed that provided . In this note, we confirm these two conjectures.  more » « less
Award ID(s):
2154331
PAR ID:
10505987
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
John Wiley
Date Published:
Journal Name:
Journal of Graph Theory
Volume:
105
Issue:
3
ISSN:
0364-9024
Page Range / eLocation ID:
357 to 366
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT If is a list assignment of colors to each vertex of an ‐vertex graph , then anequitable‐coloringof is a proper coloring of vertices of from their lists such that no color is used more than times. A graph isequitably‐choosableif it has an equitable ‐coloring for every ‐list assignment . In 2003, Kostochka, Pelsmajer, and West (KPW) conjectured that an analog of the famous Hajnal–Szemerédi Theorem on equitable coloring holds for equitable list coloring, namely, that for each positive integer every graph with maximum degree at most is equitably ‐choosable. The main result of this paper is that for each and each planar graph , a stronger statement holds: if the maximum degree of is at most , then is equitably ‐choosable. In fact, we prove the result for a broader class of graphs—the class of the graphs in which each bipartite subgraph with has at most edges. Together with some known results, this implies that the KPW Conjecture holds for all graphs in , in particular, for all planar graphs. We also introduce the new stronger notion ofstrongly equitable(SE, for short) list coloring and prove all bounds for this parameter. An advantage of this is that if a graph is SE ‐choosable, then it is both equitably ‐choosable and equitably ‐colorable, while neither of being equitably ‐choosable and equitably ‐colorable implies the other. 
    more » « less
  2. Abstract A graph isstrongly perfectif every induced subgraph of it has a stable set that meets every maximal clique of . A graph isclaw‐freeif no vertex has three pairwise nonadjacent neighbors. The characterization of claw‐free graphs that are strongly perfect by a set of forbidden induced subgraphs was conjectured by Ravindra in 1990 and was proved by Wang in 2006. Here we give a shorter proof of this characterization. 
    more » « less
  3. Abstract We say that a graphHdominates another graphHif the number of homomorphisms fromHto any graphGis dominated, in an appropriate sense, by the number of homomorphisms fromHtoG. We study the family of dominating graphs, those graphs with the property that they dominate all of their subgraphs. It has long been known that even-length paths are dominating in this sense and a result of Hatami implies that all weakly norming graphs are dominating. In a previous paper, we showed that every finite reflection group gives rise to a family of weakly norming, and hence dominating, graphs. Here we revisit this connection to show that there is a much broader class of dominating graphs. 
    more » « less
  4. null (Ed.)
    Let C be a class of graphs closed under taking induced subgraphs. We say that C has the clique-stable set separation property if there exists c ∈ N such that for every graph G ∈ C there is a collection P of partitions (X, Y ) of the vertex set of G with |P| ≤ |V (G)| c and with the following property: if K is a clique of G, and S is a stable set of G, and K ∩ S = ∅, then there is (X, Y ) ∈ P with K ⊆ X and S ⊆ Y . In 1991 M. Yannakakis conjectured that the class of all graphs has the clique-stable set separation property, but this conjecture was disproved by M. G¨o¨os in 2014. Therefore it is now of interest to understand for which classes of graphs such a constant c exists. In this paper we define two infinite families S, K of graphs and show that for every S ∈ S and K ∈ K, the class of graphs with no induced subgraph isomorphic to S or K has the clique-stable set separation property. 
    more » « less
  5. Let C be a class of graphs closed under taking induced subgraphs. We say that C has the clique-stable set separation property if there exists c∈N such that for every graph G∈C there is a collection P of partitions (X,Y) of the vertex set of G with |P|≤|V(G)|c and with the following property: if K is a clique of G, and S is a stable set of G, and K∩S=∅, then there is (X,Y)∈P with K⊆X and S⊆Y. In 1991 M. Yannakakis conjectured that the class of all graphs has the clique-stable set separation property, but this conjecture was disproved by Göös in 2014. Therefore it is now of interest to understand for which classes of graphs such a constant c exists. In this paper we define two infinite families S,K of graphs and show that for every S∈S and K∈K, the class of graphs with no induced subgraph isomorphic to S or K has the clique-stable set separation property. 
    more » « less