skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seismic Tomographic Model of the Hawaiian Ridge Line 01
Two-dimensional seismic Vp profile from MacGregor et al. (2023), including positions of the seafloor, the upper reflector, and the lower reflector along the profile. The Vp model is in netCDF-4 format and the others are in ascii format and contain the position along the line and depth below sea level. The origin of the profile is 20.49˚N, 155.8237˚W, and the azimuth of the profile is 46˚ from north.Reference: MacGregor, B. G., Dunn, R. A., Watts, A. B., Xu, C., & Shillington, D. J. (2023). A seismic tomography, gravity, and flexure study of the crust and upper mantle structure of the Hawaiian Ridge: 1. Journal of Geophysical Research: Solid Earth, 128, e2023JB027218. https://doi. org/10.1029/2023JB027218  more » « less
Award ID(s):
1737243
PAR ID:
10506080
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
figshare
Date Published:
Subject(s) / Keyword(s):
Seismology and seismic exploration
Format(s):
Medium: X Size: 12791612 Bytes
Size(s):
12791612 Bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. GeophysicsTwo-dimensional seismic Vp profile from Dunn et al. (2023), including positions of the seafloor, the upper reflector, and the lower reflector along the profile. The Vp model is in netCDF-4 format and the others are in ascii format and contain the position along the line and depth below sea level. The origin of the profile is 21.48865˚N, 158.49115˚W, and the azimuth of the profile is 15,1˚ from north.Reference: R. A. Dunn, A. B. Watts, C. Xu, and D. J. Shillington (2023) A seismic tomography, gravity, and flexure study of the crust and upper mantle structure across the Hawaiian Ridge, Part 2 Ka‘ena, Journal of Geophysical Research - Solid Earth. 
    more » « less
  2. Unaweep Canyon (Western Colorado, US) is an enigmatic alpine landform and hypothesized to represent a partially exhumed paleo valley which was glacially over-deepened in the late Paleozoic. Processing and interpretation of recently acquired 2D seismic reflection and refraction data support the concept of glacial over-deepening and indicate maximum bedrock depths of about 550 meters. Additionally, pronounced reflectors are observed within the sedimentary infill. The seismic data have also been subjected to surface wave analysis revealing a significant increase of the Vp/Vs ratio below a shallow (50 - 150 m depth) intra-sedimentary reflector. A large Vp/Vs ratio can be caused by both saturation and poor consolidation of dry low-porosity materials (e.g. dry sands).To investigate the potential occurrence of an aquifer associated with this interface, a high-density/long-offset electrical resistivity survey was conducted in fall 2019 along the seismic line. The maximum offset is 915 m at an electrode spacing of 5 meters, aiming at reaching depths of investigations between 150 and 200 meters. Inversion of the ERT data was initially conducted by means of smoothness-constrained algorithms. The imaging results revealed consistent structures with those resolved through seismic methods, at least within the required depth of investigation between 150 - 200 m. Furthermore, improvements in the resolution of the ERT imaging results was investigated after the inclusion of seismic interfaces as structural constraints in the inversion of the data. The comparison of the two approaches permitted to improve the interpretation of the ERT imaging results, which indicate low resistivities in the zone of high Vp/Vs ratios and thus strengthen the aquifer hypothesis. We present an integrated interpretation based on seismic structure, resistivity distribution, Vp and Vs velocities, and a distant well core. In a larger context, the results provide new insights on the subsurface hydrology in this arid part of the continental US as well as on the significance of multi-valued datasets for the interpretation and characterization of aquifers. 
    more » « less
  3. Raw data of optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and diameter measurements of the exfoliated and self-assembled nanofibrils for our manuscript. File Formats AFM raw data is provided in Gwyddion format, which can be viewed using the Gwyddion AFM viewer, which has been released under the GNU public software licence GPLv3 and can be downloaded free of charge at http://gwyddion.net/ Optical microscopy data is provided in JPEG format SEM raw data is provided in TIFF format Data analysis codes were written in MATLAB (https://www.mathworks.com/products/matlab) and stored as *.m files Data analysis results were stored as MATLAB multidimensional arrays (MATLAB “struct” data format, *.mat files) Data (Folder Structure) The data in the dataverse is best viewed in Tree mode. ReadMe.md This description in Markdown format. Figure 2 - Microscopy Raw Data Figure 2 - panel a.jpg (7.2 MB) Optical micrograph (JPEG format) Figure 2 - panel b.jpg (6.1 MB) Optical micrograph (JPEG format) Figure 2 - panel c f.tif (1.2 MB) SEM raw data (TIFF format) Figure 2 - panel d.tif (1.2 MB) SEM raw data (TIFF format) Figure 2 - panel e - Exfoliated Fibrils.gwy (32.0 MB) AFM raw data (Gwyddion format) Figure 3 - AFM Raw Data Figure 3 - Panel a - Exfoliated fibrils.gwy (81.5 MB) AFM raw data (Gwyddion format) Figure 3 - Panel c - Self-assembled fibrils.gwy (24.0 MB) AFM raw data (Gwyddion format) Figure 3 - Diameter Measurements Figure 3a and Figure 3c show the AFM images of exfoliated and self-assembled nanofibrils, respectively. However, due to the AFM tip-induced broadening of lateral dimensions of small features (such as nanofibrils), the diameters of nanofibrils are generally overestimated in AFM images. Hence, the diameters of the nanofibrils were estimated as the full width at half maximum (FWHM) value of line scans taken over nanofibrils perpendicular to their axial direction. Line profiles were taken at multiple locations using Gwyddion, and the raw data were stored in MATLAB struct files (lineProfileData_Exfoliated.mat and lineProfileData_Self-Assembled.mat). These data files can be directly imported into MATLAB and will appear as “DataExf” and “DataSA” in MATLAB workspace. For instance, “DataExf.x{i}” contains the x-axis data of i-th line profile, and “DataExf.y{i}” contains the y-axis data of i-th line profile. The MATLAB codes MainCode_Exf.m and MainCode_SA.m are used to fit Gaussian curves for each line profile and calculate the FWHM. The *.m files for functions gaussian.m and createFit.m must be in the same folder as the file for the main code. The main code generates figures for each line profile containing raw line profile, related Gaussian fit, and FWHM. These FWHM values are considered as the diameters of the fibrils and stored in variables called “Exf_Dia” and “SA_Dia”. Finally, these values are plotted in a histogram and calculate the statistics such as the mean and the standard deviation. Exfoliated createFit.m (1.1 KB) MATLAB code file (see above) gaussian.m (134 B) MATLAB code file (see above) lineProfileData_Exfoliated.mat (11.7 KB) Line profiles for exfoliated nanofibrils (MATLAB struct format) MainCode_Exf.m (1.8 KB) MATLAB code file (see above) Line profile raw data - Exfoliated Folder with all corresponding cross section raw data in ASCII format Self Assembled createFit.m (1.1 KB) MATLAB code file (see above) gaussian.m (134 B) MATLAB code file (see above) lineProfileData_Self-Assembled.mat (9.9 KB) Line profiles for self-assembled nanofibrils (MATLAB struct format) MainCode_SA.m (1.8 KB) MATLAB code file (see above) Line profile raw data - SelfAssembled Folder with all corresponding cross section raw data in ASCII format Figure 4 - AFM Raw Data Figure 4 - Panal a.gwy (73.4 MB) AFM raw data (Gwyddion format) Figure 4 - Panel e.gwy (42.0 MB) AFM raw data (Gwyddion format) 
    more » « less
  4. Abstract Seismicity of several intraplate seismic zones in the North American midcontinent is believed to be related to reactivation of ancient faults in Precambrian continental rifts by the contemporary stress field. Existence of such a rift system beneath the Wabash Valley Seismic Zone (WVSZ) is not clear. Here we obtained a crustal structural image along a 300‐km‐long profile across WVSZ using a dense linear seismic array. We first calculated teleseismic receiver functions of stations and applied the Common‐Conversion‐Point stacking method to image crustal interfaces and the Moho. We then used ambient noise cross correlation to obtain phase and group velocities of Rayleigh and Love waves. Finally, we jointly inverted the receiver function and surface wave dispersion data to determine shear wave velocity structure along the profile. The results show a thick (50‐ to 60‐km) crust with a typical Proterozoic crustal layering: a 1‐ to 2‐km thick Phanerozoic sedimentary layer, an upper crust ∼15 km thick, and a 30‐ to 40‐km‐thick lower crust. The unprecedented high‐resolution image also reveals a 50‐km‐wide high‐velocity body above an uplifted Moho and several velocity anomalies in the upper and middle crust beneath the La Salle Deformation Belt. We interpreted them as features produced by magmatic intrusions in a failed, immature continental rift during the end of Precambrian. Current seismicity in WVSZ is likely due to reactivation of ancient faults of the rift system by a combination of stress fields from the far‐field plate motion and prominent crustal and upper mantle heterogeneities in the region. 
    more » « less
  5. Abstract To investigate how bedrock transforms to soil, we mapped the topography of the interface demarcating onset of weathering under an east‐west trending shale watershed in the Valley and Ridge province in the USA Using wave equation travel‐time tomography from a seismic array of >4,000 geophones, we obtained a 3D P‐wave velocity (Vp) model that resolves structures ∼20 m below land surface (mbls). The depth of mobile soil and the onset of dissolution of chlorite roughly match Vp = 600 m/s and Vp = 2,700 m/s, respectively. Chlorite dissolution initiates porosity growth in the shale matrix. Depth to the 2,700 m/s contour is greater under the N‐ as compared to S‐facing hillslopes and under sub‐planar as compared to concave‐up land surfaces. Broadly, the geometries of the ‘soil’ and ‘chlorite’ Vp contours are consistent with the calculated potential for shear fracture opening under weak regional compression. However, this calculated fracture potential does not consistently explain observations related to N‐ versus S‐facing aspect nor fracture density observed by borehole televiewer. Apparently, regional compression is only a secondary influence on Vp: the primary driver of P‐wave slowing in the upper layers of this catchment is topographic control of reactive water flowpaths and their integrated effects on weathering. The Vp result is best explained as the long‐term integrated effect of groundwater flow‐induced geochemical weathering of shale in response to climate‐driven patterns of micro‐ and macro‐topography. 
    more » « less