skip to main content

Title: Nonproportionality of NaI(Tl) scintillation detector for dark matter search experiments

We present a comprehensive study of the nonproportionality of NaI(Tl) scintillation detectors within the context of dark matter search experiments. Our investigation, which integrates COSINE-100 data with supplementary$$\gamma $$γspectroscopy, measures light yields across diverse energy levels from full-energy$$\gamma $$γpeaks produced by the decays of various isotopes. These$$\gamma $$γpeaks of interest were produced by decays supported by both long and short-lived isotopes. Analyzing peaks from decays supported only by short-lived isotopes presented a unique challenge due to their limited statistics and overlapping energies, which was overcome by long-term data collection and a time-dependent analysis. A key achievement is the direct measurement of the 0.87 keV light yield, resulting from the cascade following electron capture decay of$$\mathrm {^{22}Na}$$22Nafrom internal contamination. This measurement, previously accessible only indirectly, deepens our understanding of NaI(Tl) scintillator behavior in the region of interest for dark matter searches. This study holds substantial implications for background modeling and the interpretation of dark matter signals in NaI(Tl) experiments.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The European Physical Journal C
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ultra-pure NaI(Tl) crystals are the key element for a model-independent verification of the long standing DAMA result and a powerful means to search for the annual modulation signature of dark matter interactions. The SABRE collaboration has been developing cutting-edge techniques for the reduction of intrinsic backgrounds over several years. In this paper we report the first characterization of a 3.4 kg crystal, named NaI-33, performed in an underground passive shielding setup at LNGS. NaI-33 has a record low$$^{39}$$39K contamination of 4.3 ± 0.2 ppb as determined by mass spectrometry. We measured a light yield of 11.1 ± 0.2 photoelectrons/keV and an energy resolution of 13.2% (FWHM/E) at 59.5 keV. We evaluated the activities of$$^{226}$$226Ra and$$^{228}$$228Th inside the crystal to be$$5.9\pm 0.6~\upmu $$5.9±0.6μBq/kg and$$1.6\pm 0.3~\upmu $$1.6±0.3μBq/kg, respectively, which would indicate a contamination from$$^{238}$$238U and$$^{232}$$232Th at part-per-trillion level. We measured an activity of 0.51 ± 0.02 mBq/kg due to$$^{210}$$210Pb out of equilibrium and a$$\alpha $$αquenching factor of 0.63 ± 0.01 at 5304 keV. We illustrate the analyses techniques developed to reject electronic noise in the lower part of the energy spectrum. A cut-based strategy and a multivariate approach indicated a rate, attributed to the intrinsic radioactivity of the crystal, of$$\sim $$1 count/day/kg/keV in the [5–20] keV region.

    more » « less
  2. Abstract

    We present here a characterization of the low background NaI(Tl) crystal NaI-33 based on a period of almost one year of data taking (891 kg$$\times $$×days exposure) in a detector configuration with no use of organic scintillator veto. This remarkably radio-pure crystal already showed a low background in the SABRE Proof-of-Principle (PoP) detector, in the low energy region of interest (1–6 keV) for the search of dark matter interaction via the annual modulation signature. As the vetoable background components, such as$$^{40}$$40K, are here sub-dominant, we reassembled the PoP setup with a fully passive shielding. We upgraded the selection of events based on a Boosted Decision Tree algorithm that rejects most of the PMT-induced noise while retaining scintillation signals with > 90% efficiency in 1–6 keV. We find an average background of 1.39 ± 0.02 counts/day/kg/keV in the region of interest and a spectrum consistent with data previously acquired in the PoP setup, where the external veto background suppression was in place. Our background model indicates that the dominant background component is due to decays of$$^{210}$$210Pb, only partly residing in the crystal itself. The other location of$$^{210}$$210Pb is the reflector foil that wraps the crystal. We now proceed to design the experimental setup for the physics phase of the SABRE North detector, based on an array of similar crystals, using a low radioactivity PTFE reflector and further improving the passive shielding strategy, in compliance with the new safety and environmental requirements of Laboratori Nazionali del Gran Sasso.

    more » « less
  3. Abstract

    Neutron-capture cross sections of neutron-rich nuclei are calculated using a Hauser–Feshbach model when direct experimental cross sections cannot be obtained. A number of codes to perform these calculations exist, and each makes different assumptions about the underlying nuclear physics. We investigated the systematic uncertainty associated with the choice of Hauser-Feshbach code used to calculate the neutron-capture cross section of a short-lived nucleus. The neutron-capture cross section for$$^{73}\hbox {Zn}$$73Zn(n,$$\gamma $$γ)$$^{74}\hbox {Zn}$$74Znwas calculated using three Hauser-Feshbach statistical model codes: TALYS, CoH, and EMPIRE. The calculation was first performed without any changes to the default settings in each code. Then an experimentally obtained nuclear level density (NLD) and$$\gamma $$γ-ray strength function ($$\gamma \hbox {SF}$$γSF) were included. Finally, the nuclear structure information was made consistent across the codes. The neutron-capture cross sections obtained from the three codes are in good agreement after including the experimentally obtained NLD and$$\gamma \hbox {SF}$$γSF, accounting for differences in the underlying nuclear reaction models, and enforcing consistent approximations for unknown nuclear data. It is possible to use consistent inputs and nuclear physics to reduce the differences in the calculated neutron-capture cross section from different Hauser-Feshbach codes. However, ensuring the treatment of the input of experimental data and other nuclear physics are similar across multiple codes requires a careful investigation. For this reason, more complete documentation of the inputs and physics chosen is important.

    more » « less
  4. Abstract

    The electric field surrounding a single positron in a metal is screened by an increase in the local electron density which, in the case of nearly free-electron metals (like Al, Na, etc.), has a radial distribution similar to that of the electron in positronium (Ps). In such metals, a singlet pair of positrons would experience an attractive interaction and at low enough electron densities could possibly form a bound state that is held together by exchange and correlation energies, thus forming structures analogous to that of the positronium molecule (Ps$$_2$$2), with binding energies of a few tenths of an eV. Such di-positrons could be prevalent at positron densities of around 10$$^{18}$$18cm$$^{-3}$$-3and, if so, would be evident from an apparent broadening of the sharp step at the Fermi surface in measurements of the electron momentum distribution by the angular correlation of the 2$$\gamma $$γannihilation radiation. Even if di-positrons are not directly formed in a metal, optical spectroscopy of Ps$$_2$$2formed in vacuum via pairs of positrons simultaneously being emitted from the surface could be applied to the direct measurement of the momentum distribution of Cooper pairs. If they exist, di-positrons in metals would yield interesting information about electron and positron interactions and at very high densities might allow the study of a di-positron Bose–Einstein condensate immersed in an electron gas.

    Graphic Abstract 
    more » « less
  5. Abstract

    A wide range of dark matter candidates have been proposed and are actively being searched for in a large number of experiments, both at high (TeV) and low (sub meV) energies. One dark matter candidate, a deeply bounduuddsssexaquark,$$S$$S, with mass$$\sim 2$$2GeV (having the same quark content as the hypothesized H-dibaryon, but long lived) is particularly difficult to explore experimentally. In this paper, we propose a scheme in which such a state could be produced at rest through the formation of$$\bar{p}$$p¯$$^3$$3He antiprotonic atoms and their annihilation into$$S$$S+$$K^+K^+\pi ^-$$K+K+π-, identified both through the unique tag of a$$S=+2, Q=+1$$S=+2,Q=+1final state, as well as through full kinematic reconstruction of the final state recoiling against it.

    more » « less