We study the atomic embeddability testing problem, which is a common generalization of clustered planarity (c-planarity, for short) and thickenability testing, and present a polynomial time algorithm for this problem, thereby giving the first polynomial time algorithm for c-planarity. C-planarity was introduced in 1995 by Feng, Cohen, and Eades as a variant of graph planarity, in which the vertex set of the input graph is endowed with a hierarchical clustering and we seek an embedding (crossing free drawing) of the graph in the plane that respects the clustering in a certain natural sense. Until now, it has been an open problem whether c-planarity can be tested efficiently, despite relentless efforts. The thickenability problem for simplicial complexes emerged in the topology of manifolds in the 1960s. A 2-dimensional simplicial complex is thickenable if it embeds in some orientable 3-dimensional manifold. Recently, Carmesin announced that thickenability can be tested in polynomial time. Our algorithm for atomic embeddability combines ideas from Carmesin's work with algorithmic tools previously developed for weak embeddability testing. We express our results purely in terms of graphs on surfaces, and rely on the machinery of topological graph theory. Finally we give a polynomial-time reduction from c-planarity to thickenability and show that a slight generalization of atomic embeddability to the setting in which clusters are toroidal graphs is NP-complete. 
                        more » 
                        « less   
                    
                            
                            Atomic Embeddability, Clustered Planarity, and Thickenability
                        
                    
    
            We study the atomic embeddability testing problem, which is a common generalization of clustered planarity ( c-planarity , for short) and thickenability testing, and present a polynomial-time algorithm for this problem, thereby giving the first polynomial-time algorithm for c-planarity. C-planarity was introduced in 1995 by Feng, Cohen, and Eades as a variant of graph planarity, in which the vertex set of the input graph is endowed with a hierarchical clustering and we seek an embedding (crossing free drawing) of the graph in the plane that respects the clustering in a certain natural sense. Until now, it has been an open problem whether c-planarity can be tested efficiently. The thickenability problem for simplicial complexes emerged in the topology of manifolds in the 1960s. A 2-dimensional simplicial complex is thickenable if it embeds in some orientable 3-dimensional manifold. Recently, Carmesin announced that thickenability can be tested in polynomial time. Our algorithm for atomic embeddability combines ideas from Carmesin’s work with algorithmic tools previously developed for weak embeddability testing. We express our results purely in terms of graphs on surfaces, and rely on the machinery of topological graph theory. Finally, we give a polynomial-time reduction from atomic embeddability to thickenability thereby showing that both problems are polynomially equivalent, and show that a slight generalization of atomic embeddability to the setting in which clusters are toroidal graphs is NP-complete. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1800734
- PAR ID:
- 10337219
- Date Published:
- Journal Name:
- Journal of the ACM
- Volume:
- 69
- Issue:
- 2
- ISSN:
- 0004-5411
- Page Range / eLocation ID:
- 1 to 34
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract For a clustered graph , i.e, a graph whose vertex set is recursively partitioned into clusters, the C-Planarity Testing problem asks whether it is possible to find a planar embedding of the graph and a representation of each cluster as a region homeomorphic to a closed disk such that (1) the subgraph induced by each cluster is drawn in the interior of the corresponding disk, (2) each edge intersects any disk at most once, and (3) the nesting between clusters is reflected by the representation, i.e., child clusters are properly contained in their parent cluster. The computational complexity of this problem, whose study has been central to the theory of graph visualization since its introduction in 1995 [Feng, Cohen, and Eades, Planarity for clustered graphs , ESA’95], has only been recently settled [Fulek and Tóth, Atomic Embeddability, Clustered Planarity, and Thickenability , to appear at SODA’20]. Before such a breakthrough, the complexity question was still unsolved even when the graph has a prescribed planar embedding, i.e, for embedded clustered graphs . We show that the C-Planarity Testing problem admits a single-exponential single-parameter FPT (resp., XP) algorithm for embedded flat (resp., non-flat) clustered graphs, when parameterized by the carving-width of the dual graph of the input. These are the first FPT and XP algorithms for this long-standing open problem with respect to a single notable graph-width parameter. Moreover, the polynomial dependency of our FPT algorithm is smaller than the one of the algorithm by Fulek and Tóth. In particular, our algorithm runs in quadratic time for flat instances of bounded treewidth and bounded face size. To further strengthen the relevance of this result, we show that an algorithm with running time O ( r ( n )) for flat instances whose underlying graph has pathwidth 1 would result in an algorithm with running time O ( r ( n )) for flat instances and with running time $$O(r(n^2) + n^2)$$ O ( r ( n 2 ) + n 2 ) for general, possibly non-flat, instances.more » « less
- 
            In recent years several compressed indexes based on variants of the Burrows-Wheeler transformation have been introduced. Some of these are used to index structures far more complex than a single string, as was originally done with the FM-index [Ferragina and Manzini, J. ACM 2005]. As such, there has been an increasing effort to better understand under which conditions such an indexing scheme is possible. This has led to the introduction of Wheeler graphs [Gagie et al., Theor. Comput. Sci., 2017]. Gagie et al. showed that de Bruijn graphs, generalized compressed suffix arrays, and several other BWT related structures can be represented as Wheeler graphs and that Wheeler graphs can be indexed in a way which is space-efficient. Hence, being able to recognize whether a given graph is a Wheeler graph, or being able to approximate a given graph by a Wheeler graph, could have numerous applications in indexing. Here we resolve the open question of whether there exists an efficient algorithm for recognizing if a given graph is a Wheeler graph. We present - The problem of recognizing whether a given graph G=(V,E) is a Wheeler graph is NP-complete for any edge label alphabet of size sigma >= 2, even when G is a DAG. This holds even on a restricted, subset of graphs called d-NFA's for d >= 5. This is in contrast to recent results demonstrating the problem can be solved in polynomial time for d-NFA's where d <= 2. We also show the recognition problem can be solved in linear time for sigma =1; - There exists an 2^{e log sigma + O(n + e)} time exact algorithm where n = |V| and e = |E|. This algorithm relies on graph isomorphism being computable in strictly sub-exponential time; - We define an optimization variant of the problem called Wheeler Graph Violation, abbreviated WGV, where the aim is to remove the minimum number of edges in order to obtain a Wheeler graph. We show WGV is APX-hard, even when G is a DAG, implying there exists a constant C >= 1 for which there is no C-approximation algorithm (unless P = NP). Also, conditioned on the Unique Games Conjecture, for all C >= 1, it is NP-hard to find a C-approximation; - We define the Wheeler Subgraph problem, abbreviated WS, where the aim is to find the largest subgraph which is a Wheeler Graph (the dual of the WGV). In contrast to WGV, we prove that the WS problem is in APX for sigma=O(1); The above findings suggest that most problems under this theme are computationally difficult. However, we identify a class of graphs for which the recognition problem is polynomial-time solvable, raising the open question of which parameters determine this problem's difficulty.more » « less
- 
            Aichholzer, Oswin; Wang, Haitao (Ed.)The Betti tables of a multigraded module encode the grades at which there is an algebraic change in the module. Multigraded modules show up in many areas of pure and applied mathematics, and in particular in topological data analysis, where they are known as persistence modules, and where their Betti tables describe the places at which the homology of filtered simplicial complexes changes. Although Betti tables of singly and bigraded modules are already being used in applications of topological data analysis, their computation in the bigraded case (which relies on an algorithm that is cubic in the size of the filtered simplicial complex) is a bottleneck when working with large datasets. We show that, in the special case of 0-dimensional homology (relevant for clustering and graph classification) Betti tables of bigraded modules can be computed in log-linear time. We also consider the problem of computing minimal presentations, and show that minimal presentations of 0-dimensional persistent homology can be computed in quadratic time, regardless of the grading poset.more » « less
- 
            LaValle, Steve M.; Lin, Ming; Ojala, Timo; Shell, Dylan; Yu, Jingjin (Ed.)The line coverage problem is the task of servicing a given set of one-dimensional features in an environment. Its applications include the inspection of road networks, power lines, and oil and gas lines. The line coverage problem is a generalization of the standard arc routing problems, and is NP-hard in general. We address the single robot line coverage problem where the service and deadhead costs are distinct and asymmetric. We model the problem as an optimization problem that minimizes the total cost of travel on a given graph. We present approximation algorithms to obtain bounded solutions efficiently, using the minimum cost flow problem. We build the main algorithm in stages by considering three simpler subproblems. The subproblems are based on the structure of the required graph, i.e., the graph induced by the features that require servicing. We fi rst present an optimal algorithm for the case of Eulerian graphs with only required edges. Next we consider general graphs, not necessarily Eulerian, with only required edges and present a 2-approximation algorithm. Finally, we consider the general case with both required and non-required edges. The approximation algorithm is dependent on the Asymmetric Traveling Salesperson Problem (ATSP), and is bounded by alpha(C) + 2, where alpha(C) is the approximation factor of the ATSP algorithm with C connected components. Our upper bound is also an improvement over the existing results for the asymmetric rural postman problem.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    