The development of novel drug delivery systems, which are revolutionizing modern medicine, is benefiting from studies on microorganisms’ swimming. In this paper we consider a model microorganism (a squirmer) enclosed in a viscous droplet to investigate the effects of medium heterogeneity or geometry on the propulsion speed of the caged squirmer. We first consider the squirmer and droplet to be spherical (no shape effects) and derive exact solutions for the equations governing the problem. For a squirmer with purely tangential surface velocity, the squirmer is always able to move inside the droplet (even when the latter ceases to move as a result of large fluid resistance of the heterogeneous medium). Adding radial modes to the surface velocity, we establish a new condition for the existence of a co-swimming speed (where squirmer and droplet move at the same speed). Next, to probe the effects of geometry on propulsion, we consider the squirmer and droplet to be in Newtonian fluids. For a squirmer with purely tangential surface velocity, numerical simulations reveal a strong dependence of the squirmer's speed on shapes, the size of the droplet and the viscosity contrast. We found that the squirmer speed is largest when the droplet size and squirmer's eccentricity are small, and the viscosity contrast is large. For co-swimming, our results reveal a complex, non-trivial interplay between the various factors that combine to yield the squirmer's propulsion speed. Taken together, our study provides several considerations for the efficient design of future drug delivery systems.
more »
« less
The effect of particle geometry on squirming in a heterogeneous medium
Biological microorganisms and artificial micro-swimmers often locomote in heterogeneous viscous environments consisting of networks of obstacles embedded into viscous fluid media. In this work, we use the squirmer model and present a numerical investigation of the effects of shape on swimming in a heterogeneous medium. Specifically, we analyse the microorganism's propulsion speed as well as its energetic cost and swimming efficiency. The analysis allows us to probe the general characteristics of swimming in a heterogeneous viscous environment in comparison with the case of a purely viscous fluid. We found that a spheroidal microorganism always propels faster, expends less energy and is more efficient than a spherical microorganism in either a homogeneous fluid or a heterogeneous medium. Moreover, we determined that above a critical eccentricity, a spheroidal microorganism in a heterogeneous medium can swim faster than a spherical microorganism in a homogeneous fluid. Based on an analysis of the forces acting on the squirmer, we offer an explanation for the decrease in the squirmer's speed observed in heterogeneous media compared with homogeneous fluids.
more »
« less
- Award ID(s):
- 2211633
- PAR ID:
- 10506244
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 986
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A squirmer enclosed in a droplet represents a minimal model for some drug delivery systems. In the case of a spherical squirmer swimming with a spherical cage in a Newtonian fluid [Reigh et al., “Swimming with a cage: Low-Reynolds-number locomotion inside a droplet,” Soft Matter 13, 3161 (2017)], it was found that the squirmer and droplet always propelled in the same direction albeit at different speeds. We expand the model to include particles' shape and medium's heterogeneity, two biologically relevant features. Our results reveal a novel behavior: a configuration that consists of a spherical squirmer and a spheroidal droplet in highly heterogeneous media yields a backward motion of the droplet.more » « less
-
Biological and artificial microswimmers often encounter fluid media with non-Newtonian rheological properties. In particular, many biological fluids such as blood and mucus are shear-thinning. Recent studies have demonstrated how shear-thinning rheology can impact substantially the propulsion performance in different manners. In this work, we examine the effect of geometrical shape upon locomotion in a shear-thinning fluid using a prolate spheroidal squirmer model. We use a combination of asymptotic analysis and numerical simulations to quantify how particle geometry impacts the speed and the energetic cost of swimming. The results demonstrate the advantages of spheroidal over spherical swimmers in terms of both swimming speed and energetic efficiency when squirming through a shear-thinning fluid. More generally, the findings suggest the possibility of tuning the swimmer geometry to better exploit non-Newtonian rheological behaviours for more effective locomotion in complex fluids.more » « less
-
Microorganism motility often takes place within complex, viscoelastic fluid environments, e.g. sperm in cervicovaginal mucus and bacteria in biofilms. In such complex fluids, strains and stresses generated by the microorganism are stored and relax across a spectrum of length and time scales and the complex fluid can be driven out of its linear response regime. Phenomena not possible in viscous media thereby arise from feedback between the swimmer and the complex fluid, making swimming efficiency co-dependent on the propulsion mechanism and fluid properties. Here, we parameterize a flagellar motor and filament properties together with elastic relaxation and nonlinear shear-thinning properties of the fluid in a computational immersed boundary model. We then explore swimming efficiency, defined as a particular flow rate divided by the torque required to spin the motor, over this parameter space. Our findings indicate that motor efficiency (measured by the volumetric flow rate) can be boosted or degraded by relatively moderate or strong shear thinning of the viscoelastic environment.more » « less
-
null (Ed.)We investigate the self-propulsion of an inertial swimmer in a linearly density stratified fluid using the archetypal squirmer model which self-propels by generating tangential surface waves. We quantify swimming speeds for pushers (propelled from the rear) and pullers (propelled from the front) by direct numerical solution of the Navier–Stokes equations using the finite volume method for solving the fluid flow and the distributed Lagrange multiplier method for modelling the swimmer. The simulations are performed for Reynolds numbers ( $Re$ ) between 5 and 100 and Froude numbers ( $Fr$ ) between 1 and 10. We find that increasing the fluid stratification strength reduces the swimming speeds of both pushers and pullers relative to their speeds in a homogeneous fluid. The increase in the buoyancy force experienced by these squirmers due to the trapping of lighter fluid in their respective recirculatory regions as they move in the heavier fluid is one of the reasons for this reduction. With increasing the stratification, the isopycnals tend to deform less, which offers resistance to the flow generated by the squirmers around them to propel themselves. This resistance increases with stratification, thus, reducing the squirmer swimming velocity. Stratification also stabilizes the flow around a puller keeping it axisymmetric even at high $Re$ , thus, leading to stability which is otherwise absent in a homogeneous fluid for $Re$ greater than $O(10)$ . On the contrary, a strong stratification leads to instability in the motion of pushers by making the flow around them unsteady and three-dimensional, which is otherwise steady and axisymmetric in a homogeneous fluid. A pusher is a more efficient swimmer than a puller owing to efficient convection of vorticity along its surface and downstream. Data for the mixing efficiency generated by individual squirmers explain the trends observed in the mixing produced by a swarm of squirmers.more » « less
An official website of the United States government

