skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Decoding the Late Palaeozoic glaciated landscape of Namibia: A photogrammetric journey
The geometry of unconformities carved by deep time ice sheets is often obscured and restricted by discontinuous exposure, or outcrop conditions that do not readily permit the examination of glacial unconformities (for example, steeply dipping strata). Here, we present new uncrewed aerial vehicle (UAV) data from selected outcrops across northern, central and southern Namibia to shed further light on the nature of the basal Dwyka Group unconformity. This includes the onlap relationship of basal diamictites onto the Gomatum palaeo-fjord system in northern Namibia, highly complex mapped ice flow orientations elsewhere in the northern Kaokoveld, previously undiscovered grooves along the Fish River area, and a set of subglacial grooves along the border with South Africa along the Orange River. In the latter two cases, photogrammetric methods integrating orthophotos and digital elevation models reveal the presence of subglacial grooves. Furthermore, subglacial grooves often show different orientations to striations and fabrics measured in overlying diamictites, raising fresh questions about the nature of small-scale flow variations beneath Late Palaeozoic ice sheets.  more » « less
Award ID(s):
1729882
PAR ID:
10506560
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Sedimentary Geology
Volume:
462
Issue:
C
ISSN:
0037-0738
Page Range / eLocation ID:
106592
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Ice-sheet models used to predict sea-level rise often neglect subglacial hydrology. However, theory and observations suggest that ice flow and subglacial water flow are bidirectionally coupled: ice geometry affects hydraulic potential, hydraulic potential modulates basal shear stress via the basal water pressure, and ice flow advects the subglacial drainage system. This coupling could impact rates of ice mass change but remains poorly understood. We develop a coupled ice–subglacial-hydrology model to investigate the effects of coupling on the long-term evolution of marine-terminating ice sheets. We combine a one-dimensional channelized subglacial hydrology model with a depth-integrated marine-ice-sheet model, incorporating each component of the coupling listed above, yielding a set of differential equations that we solve using a finite-difference, implicit time-stepping approach. We conduct a series of experiments with this model, using either bidirectional or unidirectional coupling. These experiments generate profiles of channel cross-sectional area, channel flow rate, channel effective pressure, ice thickness, and ice velocity. We discuss how the profiles shape one another, resulting in the effective pressure reaching a local maximum in a region near the grounding line. We also describe the impact of bidirectional coupling on the transient retreat of ice sheets through a comparison of our coupled model with ice-flow models that have imposed static basal conditions. We find that including coupled subglacial hydrology leads to grounding-line retreat that is virtually absent when static basal conditions are assumed. This work highlights the role time-evolving subglacial drainage may have in ice-sheet change and informs efforts to include it in ice-sheet models. This work also supplies a physical basis for a commonly used parameterization which assumes that the subglacial water pressure is set by the bed's depth beneath the sea surface. 
    more » « less
  2. Abstract. Antarctic meltwater is a significant source of iron that fertilizes present-day Southern Ocean ecosystems and may enhance marine carbon burial on geologic timescales. However, it remains uncertain how this nutrient flux changes through time, particularly in response to climate, due to an absence of geologic records detailing trace metal mobilization beneath ice sheets. In this study, we present a 25 kyr record of aqueous trace metal cycling beneath the East Antarctic Ice Sheet measured in a subglacial chemical precipitate that formed across glacial termination III (TIII). The deposition rate and texture of this sample describe a shift in basal meltwater flow following the termination. Alternating layers of opal and calcite deposited in the 10 kyr prior to TIII record centennial-scale subglacial flushing events, whereas reduced basal flushing resulted in slower deposition of a trace metal-rich (Fe, Mn, Mo, Cu) calcite in the 15 kyr after TIII. This sharp increase in calcite metal concentrations following TIII indicates that diminished subglacial meltwater flow restricted the influx of oxygen from basal ice melt to precipitate-forming waters, causing dissolution of redox-sensitive trace metals from the bedrock substrate. These results are consistent with a possible feedback between orbital climate cycles and Antarctic subglacial iron discharge to the Southern Ocean, whereby heightened basal meltwater flow during terminations supplies oxygen to subglacial waters along the ice sheet periphery, which reduces the solubility of redox sensitive elements. As the climate cools, thinner ice and slower ice flow reduce basal meltwater production rates, limiting oxygen delivery and promoting more efficient mobilization of subglacial trace metals. Using a simple model to calculate the concentration of Fe in Antarctic basal water through time, we show that the rate of Antarctic iron discharge to the Southern Ocean is highly sensitive to this heightened mobility, and may therefore, increase significantly during cold climate periods. 
    more » « less
  3. Abstract. Antarctic meltwater is a significant source of iron that fertilizes present-day Southern Ocean ecosystems and may enhance marine carbon burial on geologic timescales. However, it remains uncertain how the nutrient flux from the subglacial system changes through time, particularly in response to climate, due to an absence of geologic records detailing element mobilization beneath ice sheets. In this study, we present a 25 kyr record of aqueous trace metal cycling in subglacial water beneath the David Glacier catchment measured in a subglacial chemical precipitate that formed across glacial termination III (TIII), from 259.5 to 225 ka. The deposition rate and texture of this sample describe a shift in subglacial meltwater flow following the termination. Alternating layers of opal and calcite deposited in the 10 kyr prior to TIII record centennial-scale subglacial flushing events, whereas reduced basal flushing resulted in slower deposition of a trace-metal-rich (Fe, Mn, Mo, Cu) calcite in the 15 kyr after TIII. This sharp increase in calcite metal concentrations following TIII indicates that restricted influx of oxygen from basal ice melt to precipitate-forming waters caused dissolution of redox-sensitive elements from the bedrock substrate. The link between metal concentrations and climate change in this single location across TIII suggests that ice motion may play an important role in subglacial metal mobilization and discharge, whereby heightened basal meltwater flow during terminations supplies oxygen to subglacial waters along the ice sheet periphery, reducing the solubility of redox-sensitive elements. As the climate cools, thinner ice and slower ice flow decrease subglacial meltwater production rates, limiting oxygen delivery and promoting more efficient mobilization of subglacial trace metals. Using a simple model to calculate the concentration of Fe in Antarctic basal water through time, we show that the rate of Antarctic iron discharge to the Southern Ocean is sensitive to this heightened mobility and may therefore increase significantly during cold climate periods. 
    more » « less
  4. Abstract Sediment erosion, transport, and deposition by glaciers and ice sheets play crucial roles in shaping landscapes, provide important nutrients to downstream ecosystems, and preserve key indicators of past climate conditions in the geologic record. While previous work has quantified sediment fluxes from subglacial meltwater, we also observe sediment entrained within basal ice, transported by the flow of the glacier itself. However, the formation and evolution of these debris‐rich ice layers remains poorly understood and rarely represented in landscape evolution models. Here, we identify a characteristic sequence of basal ice layers at Mendenhall Glacier, Alaska. We develop a numerical model of frozen fringe and regelation processes that describes the co‐evolution of this sequence and explore the sensitivity of the model to key properties of the subglacial sedimentary system, using the Instructed Glacier Model to parameterize ice dynamics. Then, we run numerical simulations over the spatial extent of Mendenhall Glacier, showing that the sediment transport model can predict the observed basal ice stratigraphy at the glacier's terminus. From the model results, we estimate basal ice layers transport between 23,300 and 39,800 of sediment, mostly entrained in the lowermost ice layers nearest to the bed, maximized by high effective pressures and slow, convergent flow fields. Overall, our results highlight the role of basal sediment entrainment in delivering eroded material to the glacier terminus and indicate that this process should not be ignored in broader models of landscape evolution. 
    more » « less
  5. Abstract Spatial variability in bed topography, characterized as bed roughness, impacts ice-sheet flow and organization and can be used to infer subglacial conditions and processes, yet is difficult to quantify due to sparse observations. Paleo-subglacial beds of formerly expanded glaciers found across the Antarctic continental shelf are well preserved, have relatively limited post-glacial sediment cover and contain glacial landforms that can be resolved at sub-meter vertical scales. We analyze high-resolution bathymetry offshore of Pine Island and Thwaites glaciers in the Amundsen Sea to explore spatial variability of bed roughness where streamlined subglacial landforms allow for the determination of ice-flow direction. We quantify bed roughness using std dev. and Fast Fourier Transform methods, each employed at local (100km) and regional (101–2km) scales and in along- and across-flow orientations to determine roughness expressions across spatial scales. We find that the magnitude of roughness is impacted by the parameters selected – which are often not sufficiently reported in studies – to quantify roughness. Important spatial patterns can be discerned from high-resolution bathymetry, highlighting both its usefulness in identifying patterns of streaming ice flow and underscores the need for a standardized way of characterizing topographic variability. 
    more » « less