skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sigma phase kinetics in DSS filler metals: A comparison of sigma phase formation in the as-welded microstructure of super duplex stainless steel and hyper duplex stainless steel
Award ID(s):
2052747 1822144 1539992
PAR ID:
10506685
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Materials Characterization
Volume:
207
Issue:
C
ISSN:
1044-5803
Page Range / eLocation ID:
113433
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study focuses on the kinetic analysis of sigma phase formation in filler metal wires on Super Duplex Stainless Steel (SDSS) and Hyper Duplex Stainless Steel (HDSS). Precipitation data reveal that in the solubilized microstructure, sigma phase kinetics are more prominent in SDSS. This increased susceptibility is attributed to the greater number of nucleation sites, which is facilitated by the larger interface area/volume and the higher chromium content in the ferrite. The difference in interface area/volume is significantly more influential in determining kinetics than the composition difference, with nucleation sites playing a central role. The sigma phase transformation in both materials was modeled using the JMAK kinetic law. The JMAK plots exhibit a transition in kinetic mechanisms, evolving from discontinuous precipitation to diffusion-controlled growth. In SDSS, the JMAK values indicate “grain boundary nucleation after saturation,” followed by “thickening of large plates.” In contrast, HDSS values point to “grain edge nucleation after saturation,” followed by “thickening of large needles.” The higher kinetics in SDSS are characterized by a smaller nucleation activation energy of 56.4 kJ/mol, in contrast to HDSS's 490.0 kJ/mol. CALPHAD-based data support the JMAK results, aligning with the maximum kinetics temperature of SDSS (875 °C to 925 °C) and HDSS (900 °C to 925 °C). Therefore, the JMAK sigma phase kinetics effectively describe the experimental data and its dual kinetics behavior, even though CALPHAD-based TTT calculations often overestimate sigma formation. 
    more » « less
  2. The Hyper Duplex Stainless Steel HDSS enhanced corrosion resistance and toughness relies upon high alloying to obtain a balanced ferrite and austenite volume and pitting resistance equivalent number PREn. However, during welding, sigma phase precipitates might form, hindering corrosion and mechanical performance. Therefore, a kinetics model is developed to avoid the sigma phase's formation during welding and validated using physical simulation, finite element analysis (FEA), welding, and SEM characterisation. The sigma phase kinetics model produced calculated and validated temperature-time-transformation (TTT) and continuous-cooling-transformation (CCT) curves from which a 4°C/s cooling rate was found as a cooling rate threshold for sigma phase formation in this new material. Three-layered gas tungsten arc welding GTAW cladded mockup with 53 beads produced 24°C/s minimum cooling rate. Moreover, microscopy, mechanical, and corrosion testing attested it as a sigma-free weld. 
    more » « less