The Hyper Duplex Stainless Steel HDSS enhanced corrosion resistance and toughness relies upon high alloying to obtain a balanced ferrite and austenite volume and pitting resistance equivalent number PREn. However, during welding, sigma phase precipitates might form, hindering corrosion and mechanical performance. Therefore, a kinetics model is developed to avoid the sigma phase's formation during welding and validated using physical simulation, finite element analysis (FEA), welding, and SEM characterisation. The sigma phase kinetics model produced calculated and validated temperature-time-transformation (TTT) and continuous-cooling-transformation (CCT) curves from which a 4°C/s cooling rate was found as a cooling rate threshold for sigma phase formation in this new material. Three-layered gas tungsten arc welding GTAW cladded mockup with 53 beads produced 24°C/s minimum cooling rate. Moreover, microscopy, mechanical, and corrosion testing attested it as a sigma-free weld.
more »
« less
A Comparison of Sigma Phase Formation in Solubilized Hyper Duplex Stainless Steel and Super Duplex Stainless Steel Filler Metals
This study focuses on the kinetic analysis of sigma phase formation in filler metal wires on Super Duplex Stainless Steel (SDSS) and Hyper Duplex Stainless Steel (HDSS). Precipitation data reveal that in the solubilized microstructure, sigma phase kinetics are more prominent in SDSS. This increased susceptibility is attributed to the greater number of nucleation sites, which is facilitated by the larger interface area/volume and the higher chromium content in the ferrite. The difference in interface area/volume is significantly more influential in determining kinetics than the composition difference, with nucleation sites playing a central role. The sigma phase transformation in both materials was modeled using the JMAK kinetic law. The JMAK plots exhibit a transition in kinetic mechanisms, evolving from discontinuous precipitation to diffusion-controlled growth. In SDSS, the JMAK values indicate “grain boundary nucleation after saturation,” followed by “thickening of large plates.” In contrast, HDSS values point to “grain edge nucleation after saturation,” followed by “thickening of large needles.” The higher kinetics in SDSS are characterized by a smaller nucleation activation energy of 56.4 kJ/mol, in contrast to HDSS's 490.0 kJ/mol. CALPHAD-based data support the JMAK results, aligning with the maximum kinetics temperature of SDSS (875 °C to 925 °C) and HDSS (900 °C to 925 °C). Therefore, the JMAK sigma phase kinetics effectively describe the experimental data and its dual kinetics behavior, even though CALPHAD-based TTT calculations often overestimate sigma formation.
more »
« less
- PAR ID:
- 10591322
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Metallurgical and Materials Transactions A
- Volume:
- 55
- Issue:
- 8
- ISSN:
- 1073-5623
- Page Range / eLocation ID:
- 2881 to 2896
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Austenitic and ferritic stainless-steel interlayers for resistance spot welding of an AlSi-coated 2000MPa UTS press-hardened boron steel and a 6022-T4 aluminum alloy were investigated to improve joint performance. CALPHAD and kinetic-based simulations were explored to determine the effects of Cr on the formation of Fe–Al intermetallic compounds. Selected area diffraction reveals the formation of FeCrAl9 along the interlayer-Al interface and suppresses the formation of FeAl3. The implementation of stainless-steel interlayers significantly improved the mechanical performance of the joint, with the 430 foil condition experiencing a substantial decrease in the Fe–Al intermetallic.more » « less
-
This work uses kinetics calculation and a thermomechanical physical simulator to evaluate the sigma phase precipitation in Hyper Duplex Stainless Steel (HDSS) as-welded microstructure for impact toughness evaluation. Precipitation bars were machined out of a HDSS deposited clad mockup and submitted through aging on the thermomechanical physical simulator. Bars with sigma phase volumes of 0 %, 0.16 %, 0.52 %, 0.9 % and 4.3 % were created and machined to sub-size CVN specimens. Through impact CVN testing, complete ductile-to-brittletransition- temperature (DBTT) curves were developed based on absorbed energy (kV), lateral expansion (LE), and shear fracture appearance (SFA) criteria for each sigma phase volume. It was seen that sigma phase presence provides drastic reduction on toughness the HDSS. The DBTT increased from −52.29oC to 38.32oC while the upper shelf energy (USE) is reduced from 68.85J to 11.66J with the increase sigma phase volume. Both the DBTT and USE presented a behavior well fitted through a sigmoidal curve. While very low sigma phase volumes caused little change on the DBTT and USE values, a saturation effect could be inferred on the USE at 4.3 % vol of sigma phase. CVN samples’ secondary cracks high-resolution images suggest that the ferrite and austenite arrest crack propagation while the brittle sigma grains, depending on size and orientation propagate the cracks.more » « less
-
Statement of Purpose: Orthopedic implants are important therapeutic devices for the management of a wide range of orthopedic conditions. However, bacterial infections of orthopedic implants remain a major problem, and not an uncommon one, leading to an increased rate of osteomyelitis, sepsis, implant failure and dysfunction, etc. Treating these infections is more challenging as the causative organism protects itself by the production of a biofilm over the implant’s surface (1). Infections start by the adhesion and colonization of pathogenic bacteria such as Staphylococcus aureus (SA), Staphylococcus epidermidis (SE), Escherichia coli (E. coli), Methicillin-Resistant Staphylococcus aureus (MRSA), and Multi-Drug Resistant Escherichia coli (MDR E. coli) on the implant’s surfaces. Specifically, Staphylococcus comprises up to two-thirds of all pathogens involved in orthopedic implant infections (2). However, bacterial surface adhesion is a complex process influenced by several factors such as chemical composition, hydrophobicity, magnetization, surface charge, and surface roughness of the implant (3). Considering the intimate association between bacteria and the implant surface, we measured the effect of stainless-steel surface properties on bacterial surface attachment and subsequent formation of biofilms controlling above mentioned factors. Method: The prominent bacteria responsible for orthopedic implant infections (SA, SE, E. coli, MRSA, and MDR E. coli) were used in this study. We were able to control the grain size of medical grade 304 and 316L stainless steel without altering their chemical composition (grain size range= 20μm-200nm) (4). Grain size control affected the nano-topography of the material surfaces which was measured by an Atomic Force Microscope (AFM). Grain sizes, such as 0.2, 0.5, 1, 2, 3, 9, and 10 μm, were used both polished and non-polished. All the stainless-steel samples were cleaned by treating with acetone and ethanol under sonication. Triplicates of all polished and non-polished samples with different grain sizes were subjected to magnetization of DM, 0.1T, 0.5T, and 1T, before seeding them with the bacteria. Controls were used in the form of untreated samples. Bacterial were grown in Tryptic Soy Broth (TSB). An actively growing bacterial suspension was seeded onto the stainless-steel discs into 24-well micro-titer plates and kept for incubation. After 24 hours of incubation, the stainless-steel discs were washed with Phosphate Buffer Saline (PBS) to remove the plankton bacteria and allow the sessile bacteria in the biofilm to remain. The degree of development of the bacterial biofilms on the stainless-steel discs were measured using spectrophotometric analysis. For this, the bacterial biofilm was removed from the stainless steel by sonication. The formation of biofilms was also determined by performing a biofilm staining method using Safranin. Results: AFM results revealed a slight decrease in roughness by decreasing the grain size of the material. Moreover, the samples were segregated into two categories of polished and non-polished samples, in which polishing decreased roughness significantly. After careful analysis we found out that polished surfaces showed a higher degree for biofilm formation in comparison to the non-polished ones. We also observed that bacteria showed a higher rate for biofilm formation for the demagnetized samples, whereas 0.5T magnetization showed the least amount of biofilm formation. After 0.5T, there was no significant change in the rate of biofilm formation on the stainless-steel samples. Altogether, stainless steel samples containing 0.5 μm and less grainsize, and magnetized with 0.5 tesla and stronger magnets demonstrated the least degree of biofilm formation. Conclusion: In summary, the results demonstrate that controlling the grain size of medical grade stainless steel can control and mitigate bacterial responses on, and thus possibly infections of, orthopedic implants or other implantable devices. The research was funded by Komatsuseiki Kosakusho Co., Ltd (KSJ: Japan)more » « less
-
Vertebral augmentation, which includes vertebroplasty and kyphoplasty, is a minimally invasive procedure to relieve the back pain caused by vertebral compression fracture (VCF) and osteoporosis-related fractures. Vertebroplasty involves the introduction of a percutaneous needle into the vertebral body followed by an image-guided injection of cement directly into the vertebra. The market size for Vertebroplasty is expected to increase from $910 million in 2019, to $1500 million in 2024 with a CAGR of 8.4%, due to the growing demand by increasing geriatric population, rising incidence of spine illness and technological advancements in this field [1]. NanoSUS Bio-Tech (USA) was found based on a collaboration between Komatsuseiki Kosakusho Co., Ltd (Japan) and Northeastern University (NEU) in 2019 [2]. This company manufactures high strength ultra-fine-grained stainless steel with antimicrobial surface. However, nanoSUS has been developing ultra-fine-grained stainless steel since 2002 [3, 4]. Using this technology, we are able to control grain size without any change in chemical composition of commercially available FDA approved stainless steel. We are able to form this stainless steel into a vertebroplasty needle using our precision machining techniques at Komatsuseiki Kosakusho Co., Ltd. We believe this product will reduce the healthcare expenses for patients suffering from VCF due to its cost-effective manufacturing process and antimicrobial surface, which reduces iatrogenic infections and shortens hospitalization time. We are going to submit a funding proposal to Center for Disruptive Musculoskeletal Innovation (CDMI) that will aid to expand the collaboration between Komatsuseiki Kosakusho Co., Ltd and NEU. The company will be established by financing from Komatsuseiki Kosakusho Co., Ltd (Japan), in Boston, MA. It will manage the collaborations between academia, marketing consultants and lawyers in US, and directors and researchers in Japan.more » « less
An official website of the United States government

