skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using kinetics to avoid sigma phase formation on hyper duplex stainless weld cladding
The Hyper Duplex Stainless Steel HDSS enhanced corrosion resistance and toughness relies upon high alloying to obtain a balanced ferrite and austenite volume and pitting resistance equivalent number PREn. However, during welding, sigma phase precipitates might form, hindering corrosion and mechanical performance. Therefore, a kinetics model is developed to avoid the sigma phase's formation during welding and validated using physical simulation, finite element analysis (FEA), welding, and SEM characterisation. The sigma phase kinetics model produced calculated and validated temperature-time-transformation (TTT) and continuous-cooling-transformation (CCT) curves from which a 4°C/s cooling rate was found as a cooling rate threshold for sigma phase formation in this new material. Three-layered gas tungsten arc welding GTAW cladded mockup with 53 beads produced 24°C/s minimum cooling rate. Moreover, microscopy, mechanical, and corrosion testing attested it as a sigma-free weld.  more » « less
Award ID(s):
2052747 1822144 1539992
PAR ID:
10506690
Author(s) / Creator(s):
; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Science and Technology of Welding and Joining
Volume:
28
Issue:
9
ISSN:
1362-1718
Page Range / eLocation ID:
885 to 893
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We describe experimental approaches to real time examination of the microstructural evolution of Ti 6%Al 4%V upon cooling from above the beta transus (~995 °C) while imaging in the scanning electron microscope. Ti 6%Al 4%V is a two phase, α+β titanium alloy with high strength and corrosion resistance. The β →α transformation on cooling can give rise to different microstructures and properties through various thermal treatments. Fully lamellar microstructures, bi-modal microstructures, and equiaxed microstructures can each be obtained by accessing different cooling rates upon the final treatment above the beta temperature, each resulting in uniquely enhanced material properties. Utilizing the capabilities of a heating/ tensile stage developed by Kammrath & Weiss Inc., are able to apply real-time imaging techniques in the scanning electron microscope to monitor the development of the microstructure. Annealing temperatures up to 1100 °C are attainable, with cooling rates ranging from 0.1 ° C per second to 3.3 °C per second. This has allowed us to directly observe the formation of lamellae at different annealing temperature/ cooling rate combinations to determine the lamellar microstructure width, separation, and colony size. 
    more » « less
  2. This study focuses on the kinetic analysis of sigma phase formation in filler metal wires on Super Duplex Stainless Steel (SDSS) and Hyper Duplex Stainless Steel (HDSS). Precipitation data reveal that in the solubilized microstructure, sigma phase kinetics are more prominent in SDSS. This increased susceptibility is attributed to the greater number of nucleation sites, which is facilitated by the larger interface area/volume and the higher chromium content in the ferrite. The difference in interface area/volume is significantly more influential in determining kinetics than the composition difference, with nucleation sites playing a central role. The sigma phase transformation in both materials was modeled using the JMAK kinetic law. The JMAK plots exhibit a transition in kinetic mechanisms, evolving from discontinuous precipitation to diffusion-controlled growth. In SDSS, the JMAK values indicate “grain boundary nucleation after saturation,” followed by “thickening of large plates.” In contrast, HDSS values point to “grain edge nucleation after saturation,” followed by “thickening of large needles.” The higher kinetics in SDSS are characterized by a smaller nucleation activation energy of 56.4 kJ/mol, in contrast to HDSS's 490.0 kJ/mol. CALPHAD-based data support the JMAK results, aligning with the maximum kinetics temperature of SDSS (875 °C to 925 °C) and HDSS (900 °C to 925 °C). Therefore, the JMAK sigma phase kinetics effectively describe the experimental data and its dual kinetics behavior, even though CALPHAD-based TTT calculations often overestimate sigma formation. 
    more » « less
  3. Abstract Phase stability, thermal properties, and calcium–magnesium–alumina–silicate (CMAS) resistance of LuPO4at 1300°C, 1400°C, and 1500°C were studied to evaluate its potential as an environmental barrier coating (EBC) for SiC‐based ceramic‐matrix composites (CMCs). Its coefficient of thermal expansion (∼5.69 × 10−6°C−1) is close to that of SiC‐based CMCs. At 1300°C, a dense reaction layer of Ca8MgLu(PO4)7forms and inhibits CMAS penetration; however, no such layer forms at 1400°C and 1500°C, leading to CMAS infiltration along grain boundaries. Prolonged (45 and 96 hours) CMAS corrosion of LuPO4at 1300°C showed the formation of a disilicate (Lu2Si2O7) phase along with Ca8MgLu(PO4)7. A multicomponent rare earth phosphate (Lu0.2Yb0.2Er0.2Y0.2Gd0.2)PO4shows improved CMAS resistance at 1400°C due to higher grain boundary stability and slower dissolution rate of rare earth elements into molten CMAS than single component rare earth phosphate. The mechanisms of CMAS corrosion and the kinetics of the formation of protective reaction layers in LuPO4and (Lu0.2Yb0.2Er0.2Y0.2Gd0.2)PO4were elucidated. Multicomponent design is needed to increase grain boundary stability and reduce dissolution rate into molten CMAS for REPO4‐based EBCs. 
    more » « less
  4. Abstract 316L stainless steel (316L SS) is a flagship material for structural applications in corrosive environments, having been extensively studied for decades for its favorable balance between mechanical and corrosion properties. More recently, 316L SS has also proven to have excellent printability when parts are produced with additive manufacturing techniques, notably laser powder bed fusion (LPBF). Because of the harsh thermo-mechanical cycles experienced during rapid solidification and cooling, LPBF processing tends to generate unique microstructures. Strong heterogeneities can be found inside grains, including trapped elements, nano-inclusions, and a high density of dislocations that form the so-called cellular structure. Interestingly, LPBF 316L SS not only exhibits better mechanical properties than its conventionally processed counterpart, but it also usually offers much higher resistance to pitting in chloride solutions. Unfortunately, the complexity of the LPBF microstructures, in addition to process-induced defects, such as porosity and surface roughness, have slowed progress toward linking specific microstructural features to corrosion susceptibility and complicated the development of calibrated simulations of pitting phenomena. The first part of this article is dedicated to an in-depth review of the microstructures found in LPBF 316L SS and their potential effects on the corrosion properties, with an emphasis on pitting resistance. The second part offers a perspective of some relevant modeling techniques available to simulate the corrosion of LPBF 316L SS, including current challenges that should be overcome. 
    more » « less
  5. Abstract The far-from-equilibrium solidification during additive manufacturing often creates large residual stresses that induce solid-state cracking. Here we present a strategy to suppress solid-state cracking in an additively manufactured AlCrFe2Ni2high-entropy alloy via engineering phase transformation pathway. We investigate the solidification microstructures formed during laser powder-bed fusion and directed energy deposition, encompassing a broad range of cooling rates. At high cooling rates (104−106 K/s), we observe a single-phase BCC/B2 microstructure that is susceptible to solid-state cracking. At low cooling rates (102−104 K/s), FCC phase precipitates out from the BCC/B2 matrix, resulting in enhanced ductility (~10 %) and resistance to solid-state cracking. Site-specific residual stress/strain analysis reveals that the ductile FCC phase can largely accommodate residual stresses, a feature which helps relieve residual strains within the BCC/B2 phase to prevent cracking. Our work underscores the value of exploiting the toolbox of phase transformation pathway engineering for material design during additive manufacturing. 
    more » « less