skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A century of statistical Ecology
Abstract As data and computing power have surged in recent decades, statistical modeling has become an important tool for understanding ecological patterns and processes. Statistical modeling in ecology faces two major challenges. First, ecological data may not conform to traditional methods, and second, professional ecologists often do not receive extensive statistical training. In response to these challenges, the journalEcologyhas published many innovative statistical ecology papers that introduced novel modeling methods and provided accessible guides to statistical best practices. In this paper, we reflect onEcology's history and its role in the emergence of the subdiscipline of statistical ecology, which we define as the study of ecological systems using mathematical equations, probability, and empirical data. We showcase 36 influential statistical ecology papers that have been published inEcologyover the last century and, in so doing, comment on the evolution of the field. As data and computing power continue to increase, we anticipate continued growth in statistical ecology to tackle complex analyses and an expanding role forEcologyto publish innovative and influential papers, advancing the discipline and guiding practicing ecologists.  more » « less
Award ID(s):
1954406 2208894 2213565
PAR ID:
10506710
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
105
Issue:
6
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biologists routinely fit novel and complex statistical models to push the limits of our understanding. Examples include, but are not limited to, flexible Bayesian approaches (e.g. BUGS, stan), frequentist and likelihood‐based approaches (e.g. packageslme4) and machine learning methods.These software and programs afford the user greater control and flexibility in tailoring complex hierarchical models. However, this level of control and flexibility places a higher degree of responsibility on the user to evaluate the robustness of their statistical inference. To determine how often biologists are running model diagnostics on hierarchical models, we reviewed 50 recently published papers in 2021 in the journalNature Ecology & Evolution, and we found that the majority of published papers didnotreport any validation of their hierarchical models, making it difficult for the reader to assess the robustness of their inference. This lack of reporting likely stems from a lack of standardized guidance for best practices and standard methods.Here, we provide a guide to understanding and validating complex models using data simulations. To determine how often biologists use data simulation techniques, we also reviewed 50 recently published papers in 2021 in the journalMethods Ecology & Evolution. We found that 78% of the papers that proposed a new estimation technique, package or model used simulations or generated data in some capacity (18 of 23 papers); but very few of those papers (5 of 23 papers) included either a demonstration that the code could recover realistic estimates for a dataset with known parameters or a demonstration of the statistical properties of the approach. To distil the variety of simulations techniques and their uses, we provide a taxonomy of simulation studies based on the intended inference. We also encourage authors to include a basic validation study whenever novel statistical models are used, which in general, is easy to implement.Simulating data helps a researcher gain a deeper understanding of the models and their assumptions and establish the reliability of their estimation approaches. Wider adoption of data simulations by biologists can improve statistical inference, reliability and open science practices. 
    more » « less
  2. Abstract Collaboration between ecologists and learning scientists can give rise to powerful models for scientific outreach within ecology. This paper presents a process by which learning scientists and ecologists codesigned a science curriculum that invites students to join an ecological community of practice. In theJourney to El Yunquemiddle school science curriculum, students engage with simulation models generated from data gathered by Luquillo Long Term Ecological Research (LUQ LTER) scientists.Journey to El Yunquestudents can explore post‐hurricane population changes in yagrumo (Cecropia schreberiana), tabonuco (Dacryodes excelsa), coquís (Eleutherodactylus coquí), snails (Caracolus caracola), anoles (Anolis stratulusandA. gundlachi), veiled stinkhorn mushrooms (Dictyophora indusiata), and caterpillars (Historis odius). Ecology‐based revisions toJourney to El Yunquehave included adding models of the effects of repeated hurricanes on limiting factors, based in part on findings from a canopy trimming experiment. Revisions based on classroom testing include simplifying student‐facing model controls to allow students to focus on the essential model components. The ongoing collaboration that keeps theJourney to El Yunquecurriculum on the cutting edge of ecological and educational advances has been sustained for over two decades. We attribute the longevity of this work to (1) the long‐term nature of LUQ LTER, (2) a sustained interdisciplinary collaboration, and (3) our long‐term relationships with schools. 
    more » « less
  3. Abstract Ecosystem models offer a rigorous way to formalize scientific theories and are critical to evaluating complex interactions among ecological and biogeochemical processes. In addition to simulation and prediction, ecosystem models are a valuable tool for testing hypotheses about mechanisms and empirical findings because they reveal critical internal processes that are difficult to observe directly.However, many ecosystem models are difficult to manage and apply by scientists who lack advanced computing skills due to complex model structures, lack of consistent documentation, and low-level programming implementation, which facilitates computing but reduces accessibility.Here, we present the ‘pnetr’ R package, which is designed to provide an easy-to-manage ecosystem modeling framework and detailed documentation in both model structure and programming. The framework implements a family of widely used PnET (net photosynthesis, evapotranspiration) ecosystem models, which are relatively parsimonious but capture essential biogeochemical cycles of water, carbon, and nutrients. We chose the R programming language since it is familiar to many ecologists and has abundant statistical modeling resources. We showcase examples of model simulations and test the effects of phenology on carbon assimilation and wood production using data measured by the Environmental Measurement Station (EMS) eddy-covariance flux tower at Harvard Forest, MA.We hope ‘pnetr’ can facilitate further development of ecological theory and increase the accessibility of ecosystem modeling and ecological forecasting. 
    more » « less
  4. Abstract ContextUnoccupied aerial systems/vehicles (UAS/UAV, a.k.a. drones) have become an increasingly popular tool for ecological research. But much of the recent research is concerned with developing mapping and detection approaches, with few studies attempting to link UAS data to ecosystem processes and function. Landscape ecologists have long used high resolution imagery and spatial analyses to address ecological questions and are therefore uniquely positioned to advance UAS research for ecological applications. ObjectivesThe review objectives are to: (1) provide background on how UAS are used in landscape ecological studies, (2) identify major advancements and research gaps, and (3) discuss ways to better facilitate the use of UAS in landscape ecology research. MethodsWe conducted a systematic review based on PRISMA guidelines using key search terms that are unique to landscape ecology research. We reviewed only papers that applied UAS data to investigate questions about ecological patterns, processes, or function. ResultsWe summarize metadata from 161 papers that fit our review criteria. We highlight and discuss major research themes and applications, sensors and data collection techniques, image processing, feature extraction and spatial analysis, image fusion and satellite scaling, and open data and software. ConclusionWe observed a diversity of UAS methods, applications, and creative spatial modeling and analysis approaches. Key aspects of UAS research in landscape ecology include modeling wildlife micro-habitats, scaling of ecosystem functions, landscape and geomorphic change detection, integrating UAS with historical aerial and satellite imagery, and novel applications of spatial statistics. 
    more » « less
  5. Abstract Ecosystem models offer a rigorous way to formalize scientific theories and are critical to evaluating complex interactions among ecological and biogeochemical processes. In addition to simulation and prediction, ecosystem models are a valuable tool for testing hypotheses about mechanisms and empirical findings because they reveal critical internal processes that are difficult to observe directly.However, many ecosystem models are difficult to manage and apply by scientists because of complex model structures, lack of consistent documentation, and low‐level programming implementation.Here, we present the ‘pnetr’ R package, which is designed to provide an easy‐to‐manage ecosystem modelling framework and detailed documentation in both model structure and programming. The framework implements a family of widely used PnET (net photosynthesis, evapotranspiration) ecosystem models, which are relatively parsimonious but capture essential biogeochemical cycles of water, carbon and nitrogen. We chose the R programming language because it is familiar to many ecologists and has abundant statistical modelling resources. We showcase examples of model simulations and test the effects of phenology on carbon assimilation and wood production using data measured by the Environmental Measurement Station (EMS) eddy‐covariance flux tower at Harvard Forest, MA.We hope ‘pnetr’ can facilitate further development of ecological theory and increase the accessibility of ecosystem modelling and ecological forecasting. 
    more » « less