skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inductively Coupled Nonthermal Plasma Synthesis of Size-Controlled γ-Al2O3 Nanocrystals
Gamma alumina (γ-Al2O3) is widely used as a catalyst and catalytic support due to its high specific surface area and porosity. However, synthesis of γ-Al2O3 nanocrystals is often a complicated process requiring high temperatures or additional post-synthetic steps. Here, we report a single-step synthesis of size-controlled and monodisperse, facetted γ-Al2O3 nanocrystals in an inductively coupled nonthermal plasma reactor using trimethylaluminum and oxygen as precursors. Under optimized conditions, we observed phase-pure, cuboctahedral γ-Al2O3 nanocrystals with defined surface facets. Nuclear magnetic resonance studies revealed that nanocrystal surfaces are populated with AlO6, AlO5 and AlO4 units with clusters of hydroxyl groups. Nanocrystal size tuning was achieved by varying the total reactor pressure yielding particles as small as 3.5 nm, below the predicted thermodynamic stability limit for γ-Al2O3.  more » « less
Award ID(s):
2011401
PAR ID:
10506839
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nanomaterials
Date Published:
Journal Name:
Nanomaterials
Volume:
13
Issue:
10
ISSN:
2079-4991
Page Range / eLocation ID:
1627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the successful synthesis of monodispersed Cu2S nanocrystals and the subsequent formation of highly ordered nanocrystal superlattices. The synthesis is performed under ambient air conditions using simple experimental setups, making the process both accessible and scalable. By systematically tuning the reaction temperature and duration, we demonstrate precise control over the nanocrystal size, which is crucial in achieving uniformity and monodispersity. Furthermore, we uncover a previously unidentified nanocrystal growth mechanism that plays a key role in producing highly monodisperse Cu2S nanocrystals. This insight into the growth process enhances our fundamental understanding of nanocrystal formation and could be extended to the synthesis of other semiconductor nanomaterials. The self-assembly of these nanocrystals into superlattices is carefully examined using electron diffraction techniques, revealing the presence of pseudo-crystalline structures. The ordered arrangement of nanocrystals within these superlattices suggests strong interparticle interactions and opens up new possibilities to tailor their collective optical, electronic, and mechanical properties for potential applications in optoelectronics, nanomedicine, and energy storage. 
    more » « less
  2. Halide perovskite nanocrystals are at the forefront of materials research due to their remarkable optoelectronic properties and versatile applications. While their lattice structure and optical properties have been extensively investigated for the structure–property correlation, their lattice dynamics, the physical link between the lattice structure and optoelectronic properties, has been much less visited. We report the evolution of structural dynamics of a series of cesium lead halide perovskite nanocrystals whose size and morphology are systematically varied by synthesis temperature. Low-frequency Raman spectroscopy uncovers the nanocrystals’ structural dynamics, including a relaxational spectral continuum from ligand librations and a phonon spectrum evolving with nanocrystal size. As the size of nanocrystals increases, their phonon spectrum becomes more intense, and their spectral weights redistribute with new first- and second-order modes being activated. The linewidth of the observed phonon modes generally broadens as the nanocrystal grows larger, an interesting deviation from the established phonon confinement model. We suggest that strong confinement and truncation of the lattice and ligands anchoring on the surface might lead to pinning of the lattice dynamics at nanoscale. These findings offer new insights into the bulk–nano-transition in halide perovskite soft semiconductors. 
    more » « less
  3. Seed-mediated synthesis is a versatile method to prepare multimetallic nanocrystals for diverse applications. However, many fundamental questions remain on how the structural and chemical properties of nanocrystal seeds control the reaction pathways, especially for nonaqueous synthesis at elevated temperatures. Herein, we elucidate the role of surface ligands and crystallinity of Au nanocrystal seeds on the heterometallic seeded growth of Cu-based nanocrystals. We found that weakly coordinating ligands are critical to facilitate the diffusion between Au and Cu, which enables subsequent one-dimensional growth of Cu. Replacing multiple-twinned Au seeds with single-crystalline ones switched the growth pathway to produce heterostructured nanocrystals. Our work illustrates the importance of precise control of seed characteristics for the predictive synthesis of structurally complex multimetallic nanocrystals. 
    more » « less
  4. null (Ed.)
    Nonthermal plasma (NTP) offers a unique synthesis environment capable of producing nanocrystals of high melting point materials at relatively low gas temperatures. Despite the rapidly growing material library accessible through NTP synthesis, designing processes for new materials is predominantly empirically driven. Here, we report on the synthesis of both amorphous alumina and γ-Al 2 O 3 nanocrystals and present a simple particle heating model that is suitable for predicting the plasma power necessary for crystallization. The heating model only requires the composition, temperature, and pressure of the background gas along with the reactor geometry to calculate the temperature of particles suspended in the plasma as a function of applied power. Complete crystallization of the nanoparticle population was observed when applied power was greater than the threshold where the calculated particle temperature is equal to the crystallization temperature of amorphous alumina. 
    more » « less
  5. We report a synthesis procedure for dodecanethiol capped wurtzite ZnO nanocrystals with an average diameter of 4 nm that are monodisperse, highly soluble, and shelf-stable for many months. Compared to previous ZnO ink recipes, we demonstrate improved particle solubility and excellent ink stability, resulting in ZnO nanocrystal inks that are optimized for printed electronics applications. The ZnO nanocrystal solution exhibits an absorption peak at 341 nm (3.63 eV), which represents a blue-shift of approximately 0.3 eV from the bulk ZnO bandgap (∼3.3 eV). This blue shift is consistent with previously reported models for an increased bandgap due to quantum confinement. We used variable-angle spectroscopic ellipsometry (VASE) to determine the optical properties of solution-processed thin films of ZnO nanocrystals, which provides valuable insight into the changes in film composition and morphology that occur during thermal annealing treatments ranging from 150–300 °C. The ZnO nanocrystals maintain their quantum confinement when deposited into a thin film, and the degree of quantum confinement is gradually reduced as the thermal annealing temperature increases. Using infrared absorption measurements (FTIR) and X-ray photoelectron spectroscopy (XPS), we show that the dodecanethiol ligands are removed from the ZnO films during annealing, resulting in a high-purity semiconductor film with very low carbon contamination. Furthermore, we show that annealing at 300 °C results in complete ligand removal with only a slight increase in grain size. Thin-film transistors (TFT) using ZnO nanocrystals as the channel material annealed at 300 °C show moderate mobility (∼0.002 cm 2 V −1 s −1 ) and good on/off ratio >10 4 . These results demonstrate the distinct advantages of colloidal nanocrystals for printed electronics applications: the composition and morphology of the solution-processed film can be carefully tuned by controlling the size and surface coating of the nanocrystals in the ink. 
    more » « less