Abstract UNS N06693 is a Ni-base alloy that provides metal dusting corrosion resistance in steam generator pipes with operating temperatures above 500°C. A crack failure occurred in a 6.5mm thick similar weld pipe joint, located at both fusion zone and heat affected zone, after about 10 years in service and 2 months after weld repair in adjacent weld, which warranted an investigation into possible root causes of failure. This study investigates the potential failure mechanisms that may arise during service (such as stress relaxation cracking, stress corrosion cracking, ductility dip cracking, and creep failure) for UNS N06693 in order to understand the observed cracking behavior. In this year, preliminary fractography, metallurgical characterization, thermodynamic and kinetic CALHAD simulations, and investigation into potential contributing factors (e.g., weld procedure specifications (WPS) and post weld heat treatment (PWHT)) to failure have been completed. The fracture surfaces indicate brittle, intergranular failure, such that no shear lips were observed, and radial lines (crack propagation) were primarily observed in weld fusion zone. Metallurgical characterization near the fracture surface is conducted to reveal the contributing factors to failure, such as intermetallic phases (e.g., Cr-rich α-phase) and distribution of carbide particles (e.g., intergranular chromium carbides), that may contribute to reduced cracking and sensitization resistance. Blocky, intergranular Cr-rich precipitates, either Cr-rich α-phase or Cr-rich M23C6., are observed behind secondary cracks. Based on the initial findings, contributing factors for failure considered are increase in tensile residual stresses due to nearby repair field weld and grain boundary embrittlement due to coarse, blocky Cr-rich phase that likely developed during initial PWHT and within the 10-year service window. In the following year, a more in-depth metallurgical characterization, discussion on contributing causes and possible mitigation strategies for improving microstructural stability and performance-based weldability (e.g., weld procedure and PWHT design), and conclusions with root cause analysis will be provided.
more »
« less
Hydrogen-Assisted Cracking Fracture Analysis using High-Speed Camera and Delayed Hydrogen Cracking Test
Dissimilar metal welds (DMWs) are commonly used when a high strength steel is overlaid with a corrosion resistant alloy (CRA) for petrochemical applications. There have been reported failures of these DMWs during subsea service while under cathodic protection (CP). These failures are caused by local hydrogen embrittlement of susceptible microstructures that form at the weld fusion boundary. Hydrogen-assisted cracking (HAC) occurs as a result of the local embrittlement and is influenced by base/filler metal combinations, and welding and post-weld heat treatment (PWHT) procedures. A delayed hydrogen cracking test was used to simulate tensile load and hydrogen charging on 8630-FM 625 weld. The failure of this sample was recorded using a high-speed camera to capture the crack initiation and propagation during failure. Fractography was performed using a scanning electron microscope (SEM) along with energy dispersive spectroscopy (EDS). The fracture surfaces, EDS measurement and video timestamps revealed brittle fracture nucleation in the planar growth and CGHAZ regions of the weld. The cracking continued to propagate through the same regions of the weld leading to final ductile failure (microvoid coalescence) in the cellular dendritic region of the weld.
more »
« less
- Award ID(s):
- 2052747
- PAR ID:
- 10506955
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of Failure Analysis and Prevention
- Volume:
- 22
- Issue:
- 1
- ISSN:
- 1547-7029
- Page Range / eLocation ID:
- 385 to 399
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high-strength steels to eliminate the need for post-weld heat treatment (PWHT) in field welding. Hydrogen-assisted cracking (HAC) can occur in DMWs during subsea service under cathodic protection. DMWs of two material combinations, 8630 steel/FM 625 and F22 steel/FM 625, produced with two welding procedures, non-temper bead (BS1) and temper bead (BS3), in the as-welded and PWHT conditions were investigated in this study. These DMWs were subjected to metallurgical characterization and testing with the delayed hydrogen cracking test (DHCT) to identify the effects of base metal composition, welding and PWHT procedures on their HAC susceptibility. The HAC susceptibility was ranked using the time to failure in the DHCT at loads equivalent to 90% of the base metal yield strength (YS) and the apparent stress threshold for HAC. A criterion for resistance to HAC in the testing conditions of DHCT was also established. The results of this study showed that 8630/FM 625 DMWs were more susceptible to HAC than the F22/FM 625 DMWs. PWHT did not sufficiently reduce the HAC susceptibility of the 8630/FM 625 and F22/FM 625 BS1 welds. DMWs produced using BS3 performed better than BS1 DMWs. The post-weld heat-treated F22/FM 625 BS3 DMW passed the HAC resistance criterion.more » « less
-
Additions of nitrogen were made to ERNiCr-3 (FM 82) weld metal to investigate the effect on weld metal microstructure and solidification cracking susceptibility. Weld samples were prepared with different argon-nitrogen shielding gas mixtures to produce nitrogen variations in the weld metal. The cast pin tear test (CPTT) was then used to evaluate solidification cracking susceptibility as a function of weld metal nitrogen content. Phase fraction and composition of constituents in the final solidification microstructure were characterized via optical and electron microscopy. Thermodynamic (Scheil) calculations were performed to determine the phase formation during solidification, associated solidification path, and solidification temperature range. Solidification cracking susceptibility was found to increase significantly with increasing nitrogen content. The overall amount of second phase in the solidified microstructure increased when nitrogen was added to the weld metal. Small skeletal constituents in the interdendritic regions, primarily Nb-rich carbides (NbC), were more frequently observed with increasing weld metal nitrogen content. Larger cuboidal Ti-rich nitrides (TiN) and carbonitrides (Ti, Nb)(N, C) were found only when nitrogen was added to the weld metal. Their location in dendrite core regions indicates formation during an earlier stage of the solidification process. Scheil calculations confirmed the strong effect of nitrogen additions on the amount and sequence of phase formation during solidification of ERNiCr-3 weld metal. High nitrogen levels ( 100 ppm) facilitate primary nitride formation prior to the solidification of the gamma () dendrites, and increase the amount of phase constituents in the solidification microstructure. The presence of nitrogen also shifts the start of the eutectic /NbC formation at the end of solidification to lower temperatures, which results in an increase in the solidification temperature range. This occurs at much lower nitrogen levels ( 25 ppm) and correlates with the observed increase in solidification cracking susceptibility.more » « less
-
This study addresses the limitations of cross weld tensile testing (CWTT) in quantifying local mechanical properties across microstructural and compositional gradients in dissimilar– and matching–filler metal welds. A digital image correlation (DIC) methodology was validated for application in CWTT by direct comparison of stress-strain curves generated using conventional and virtual DIC extensometers in tensile testing of homogeneous steel samples. DIC-instrumented CWTT of dissimilar weld metal Alloy 625 filler metal on F65 steel demonstrated capability in quantifying the local yield strength, strain-hardening kinetics, and strain at failure in the base metal, heat-affected zone (HAZ), fusion boundary (FB) region, and weld metal in dissimilar and matching filler metal welds. It was shown that the high strain-hardening capacity in Alloy 625 weld metal led to base metal failure in CWTT despite the lower Alloy 625 weld metal yield strength. It was also shown that DIC-instrumented CWTT can be used for determining weld metal undermatching and overmatching conditions in compositionally matching- and dissimilar-metal welds. Furthermore, by quantifying local strain distribution (both elastic and plastic) in the HAZ, FB region, and weld metal, DIC-instrumented CWTT provides an additional method for evaluating hydrogen-assisted cracking susceptibility in dissimilar-metal welds.more » « less
-
An externally restrained stress relief cracking test was developed and demonstrated in testing susceptible and resistant to cracking welds in Cr–Mo steels. Compared to other externally restrained tests, it simultaneously applies stress and compensates thermal expansion during heating to post-weld heat treatment temperature and utilises digital image correlation for quantification of key characteristics of the stress relaxation and stress relief cracking phenomena. In contrast with resistant to stress relief cracking materials, susceptible materials experienced lower levels of stress relaxation, strain absorption, and sustained mechanical energy, with accelerated kinetics of strain accumulation and strain localisation leading to failure. The processes of stress relief cracking and stress relaxation were quantified as low strain – slow strain rate – low energy phenomena.more » « less
An official website of the United States government

