The Gram‐positive bacteria, methicillin‐resistant
Antibiotic resistance in Gram-negative pathogens has been identified as an urgent threat to human health by the World Health Organization. The major challenge with treating infections by these pathogens is developing antibiotics that can traverse the dense bacterial outer membrane (OM) formed by a mesh of lipopolysaccharides. Effective antibiotics permeate through OM porins, which have evolved for nutrient diffusion; however, the conformational states of these porins regulating permeation are still unclear. Here, we used molecular dynamics simulations, free energy calculations, Markov-state modeling, and whole-cell accumulation assays to provide mechanistic insight on how a porin shifts between open and closed states. We provide a mechanism of how Gram-negative bacteria confer resistance to antibiotics.
more » « less- Award ID(s):
- 1845606
- PAR ID:
- 10507115
- Editor(s):
- Andrej Sali, Bioengineering &
- Publisher / Repository:
- National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 8
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- e2117009119
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Staphylococcus aureus (MRSA) and Gram‐negative bacteria,Acinetobacter baumannii , are pathogens responsible for millions of nosocomial infections worldwide. Due to the threat of bacteria evolving resistance to antibiotics, scientists are constantly looking for new classes of compounds to treat infectious diseases. The biphenolic analogs of honokiol that were most potent against oral bacteria had similar bioactivity against MRSA. However, all the compounds proved ineffective againstA. baumannii . The inability to inhibitA. baumannii is due to the difficult‐to‐penetrate lipopolysaccharide‐coated outer membrane that makes it challenging for antibiotics to enter Gram‐negative bacteria. TheC 2 scaffold was optimized from the inhibition of Gram‐positive bacteria to broad‐spectrum antibacterial compounds that inhibit the dangerous Gram‐negative pathogenA. baumannii . -
null (Ed.)Bacterial colonization of biotic and abiotic surfaces and antibiotic resistance are grand challenges with paramount societal impacts. However, in the face of increasing bacterial resistance to all known antibiotics, efforts to discover new classes of antibiotics have languished, creating an urgent need to accelerate the antibiotic discovery pipeline. A major deterrent in the discovering of new antibiotics is the limited permeability of molecules across the bacterial envelope. Notably, the Gram-negative bacteria have nutrient specific protein channels (or porins) that restrict the permeability of non-essential molecules, including antibiotics. Here, we have developed the Computational Antibiotic Screening Platform (CLASP) for screening of potential drug molecules through the porins. The CLASP takes advantage of coarse grain (CG) resolution, advanced sampling techniques, and a parallel computing environment to maximize its performance. The CLASP yields comprehensive thermodynamic and kinetic output data of a potential drug molecule within a few hours of wall-clock time. Its output includes the potential of mean force profile, energy barrier, the rate constant, and contact analysis of the molecule with the pore-lining residues, and the orientational analysis of the molecule in the porin channel. In our first CLASP application, we report the transport properties of six carbapenem antibiotics—biapenem, doripenem, ertapenem, imipenem, meropenem, and panipenem—through OccD3, a major channel for carbapenem uptake in Pseudomonas aeruginosa . The CLASP is designed to screen small molecule libraries with a fast turnaround time to yield structure–property relationships to discover antibiotics with high permeability. The CLASP will be freely distributed to enable accelerated antibiotic drug discovery.more » « less
-
Bhuvanesh Gupta ; Anup K.Ghosh ; Atsushi Suzuki ; Sunita Rattan (Ed.)Antibiotic resistance in bacteria is a major health concern. Antimicrobial Peptides (AMPs) are efficient in killing most microbes and yet the development of resistance to AMPs is rare. Although AMPs show promising antimicrobial activities, commercializing them as antibiotics is difficult as in vitro extraction and purification of AMPs is complicated and expensive. AMP mimicking antimicrobial polymers can overcome such problems while maintaining the necessary features of AMPs. Here, we have developed meth-acrylamide based polymers to mimic AMPs which possess high antimicrobial activities with low cytotoxicity. Bactericidal and scanning electron microscopy studies show that the synthesized polymers are effective against Gram-positive and Gram-negative bacteria. We find that these polymers are lethal to bacteria and at the same time, they are also non-cytotoxic to mammalian cells, thereby increasing the potential of these polymers to be used as antibiotics.more » « less
-
Abstract The outer membrane is a key virulence determinant of gram‐negative bacteria. In
Yersinia pestis , the deadly agent that causes plague, the protein Ail and lipopolysaccharide (LPS)6enhance lethality by promoting resistance to human innate immunity and antibiotics, enabling bacteria to proliferate in the human host. Their functions are highly coordinated. Here we describe how they cooperate to promote pathogenesis. Using a multidisciplinary approach, we identify mutually constructive interactions between Ail and LPS that produce an extended conformation of Ail at the membrane surface, cause thickening and rigidification of the LPS membrane, and collectively promoteY. pestis survival in human serum, antibiotic resistance, and cell envelope integrity. The results highlight the importance of the Ail–LPS assembly as an organized whole, rather than its individual components, and provide a handle for targetingY. pestis pathogenesis. -
Abstract The emergence and spread of antimicrobial resistance highlights the urgent need for new antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich’s salvarsan. Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We demonstrate that arsinothricin, a non-proteinogenic analog of glutamate that inhibits glutamine synthetase, is an effective broad-spectrum antibiotic against both Gram-positive and Gram-negative bacteria, suggesting that bacteria have evolved the ability to utilize the pervasive environmental toxic metalloid arsenic to produce a potent antimicrobial. With every new antibiotic, resistance inevitably arises. The
arsN1 gene, widely distributed in bacterial arsenic resistance (ars ) operons, selectively confers resistance to arsinothricin by acetylation of the α-amino group. Crystal structures of ArsN1N -acetyltransferase, with or without arsinothricin, shed light on the mechanism of its substrate selectivity. These findings have the potential for development of a new class of organoarsenical antimicrobials and ArsN1 inhibitors.