This paper considers the recursive estimation of quantiles using the stochastic gradient descent (SGD) algorithm with Polyak-Ruppert averaging. The algorithm offers a compu- tationally and memory efficient alternative to the usual empirical estimator. Our focus is on studying the non-asymptotic behavior by providing exponentially decreasing tail prob- ability bounds under mild assumptions on the smoothness of the density functions. This novel non-asymptotic result is based on a bound of the moment generating function of the SGD estimate. We apply our result to the problem of best arm identification in a multi-armed stochastic bandit setting under quantile preferences.
more »
« less
Risk bounds for quantile trend filtering
Summary We study quantile trend filtering, a recently proposed method for nonparametric quantile regression, with the goal of generalizing existing risk bounds for the usual trend-filtering estimators that perform mean regression. We study both the penalized and the constrained versions, of order $$r \geqslant 1$$, of univariate quantile trend filtering. Our results show that both the constrained and the penalized versions of order $$r \geqslant 1$$ attain the minimax rate up to logarithmic factors, when the $(r-1)$th discrete derivative of the true vector of quantiles belongs to the class of bounded-variation signals. Moreover, we show that if the true vector of quantiles is a discrete spline with a few polynomial pieces, then both versions attain a near-parametric rate of convergence. Corresponding results for the usual trend-filtering estimators are known to hold only when the errors are sub-Gaussian. In contrast, our risk bounds are shown to hold under minimal assumptions on the error variables. In particular, no moment assumptions are needed and our results hold under heavy-tailed errors. Our proof techniques are general, and thus can potentially be used to study other nonparametric quantile regression methods. To illustrate this generality, we employ our proof techniques to obtain new results for multivariate quantile total-variation denoising and high-dimensional quantile linear regression.
more »
« less
- Award ID(s):
- 1916375
- PAR ID:
- 10507256
- Publisher / Repository:
- Biometrika
- Date Published:
- Journal Name:
- Biometrika
- Volume:
- 109
- Issue:
- 3
- ISSN:
- 0006-3444
- Page Range / eLocation ID:
- 751 to 768
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We develop a new method to fit the multivariate response linear regression model that exploits a parametric link between the regression coefficient matrix and the error covariance matrix. Specifically, we assume that the correlations between entries in the multivariate error random vector are proportional to the cosines of the angles between their corresponding re- gression coefficient matrix columns, so as the angle between two regression coefficient matrix columns decreases, the correlation between the corresponding errors increases. We highlight two models under which this parameterization arises: a latent variable reduced-rank regression model and the errors-in-variables regression model. We propose a novel non-convex weighted residual sum of squares criterion which exploits this parameterization and admits a new class of penalized estimators. The optimization is solved with an accelerated proximal gradient de- scent algorithm. Our method is used to study the association between microRNA expression and cancer drug activity measured on the NCI-60 cell lines. An R package implementing our method, MCMVR, is available online.more » « less
-
null (Ed.)Summary Quantile regression is a popular and powerful method for studying the effect of regressors on quantiles of a response distribution. However, existing results on quantile regression were mainly developed for cases in which the quantile level is fixed, and the data are often assumed to be independent. Motivated by recent applications, we consider the situation where (i) the quantile level is not fixed and can grow with the sample size to capture the tail phenomena, and (ii) the data are no longer independent, but collected as a time series that can exhibit serial dependence in both tail and non-tail regions. To study the asymptotic theory for high-quantile regression estimators in the time series setting, we introduce a tail adversarial stability condition, which had not previously been described, and show that it leads to an interpretable and convenient framework for obtaining limit theorems for time series that exhibit serial dependence in the tail region, but are not necessarily strongly mixing. Numerical experiments are conducted to illustrate the effect of tail dependence on high-quantile regression estimators, for which simply ignoring the tail dependence may yield misleading $$p$$-values.more » « less
-
Abstract With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.more » « less
-
We propose a framework for analyzing the sensitivity of counterfactuals to parametric assumptions about the distribution of latent variables in structural models. In particular, we derive bounds on counterfactuals as the distribution of latent variables spans nonparametric neighborhoods of a given parametric specification while other “structural” features of the model are maintained. Our approach recasts the infinite‐dimensional problem of optimizing the counterfactual with respect to the distribution of latent variables (subject to model constraints) as a finite‐dimensional convex program. We also develop an MPEC version of our method to further simplify computation in models with endogenous parameters (e.g., value functions) defined by equilibrium constraints. We propose plug‐in estimators of the bounds and two methods for inference. We also show that our bounds converge to the sharp nonparametric bounds on counterfactuals as the neighborhood size becomes large. To illustrate the broad applicability of our procedure, we present empirical applications to matching models with transferable utility and dynamic discrete choice models.more » « less