Background Insects are the most diverse group of animals which have established intricate evolutionary interactions with bacteria. However, the importance of these interactions is still poorly understood. Few studies have focused on a closely related group of insect species, to test the similarities and differences between their microbiota. Heliconius butterflies are a charismatic recent insect radiation that evolved the unique ability to use pollen as a protein source, which affected life history traits and resulted in an elevated speciation rates. We hypothesize that different Heliconius butterflies sharing a similar trophic pollen niche, harbor a similar gut flora within species, population and sexes. Methods To test our hypothesis, we characterized the microbiota of 38 adult male and female butterflies representing six species of Heliconius butterflies and 2 populations of the same species. We sequenced the V4 region of the 16S rRNA gene with the Roche 454 system and analyzed the data with standard tools for microbiome analysis. Results Overall, we found a low microbial diversity with only 10 OTUs dominating across all individuals, mostly Proteobacteria and Firmicutes, which accounted for 99.5% of the bacterial reads. When rare reads were considered, we identified a total of 406 OTUs across our samples. We identified reads within Phyla Chlamydiae , found in 5 butterflies of four species. Interestingly, only three OTUs were shared among all 38 individuals ( Bacillus, Enterococcus and Enterobacteriaceae ). Altogether, the high individual variation overshadowed species and sex differences. Thus, bacterial communities were not structured randomly with 13% of beta-diversity explained by species, and 40 rare OTUs being significantly different across species. Finally, 13 OTUs, including the intercellular symbiont Spiroplasma, varied significantly in relative abundance between males and females. Discussion The Heliconius microbial communities in these 38 individuals show a low diversity with few differences in the rare microbes between females, males, species or populations. Indeed, Heliconius butterflies, similarly to other insects, are dominated by few OTUs, mainly from Proteobacteria and Firmicutes. The overall low microbial diversity observed contrasts with the high intra-species variation in microbiome composition. This could indicate that much of the microbiome maybe acquired from their surroundings. The significant differences between species and sexes were restricted to rare taxa, which could be important for microbial community stability under changing conditions as seen in other host-microbiome systems. The presence of symbionts like Spiroplasma or Chlamydiae , identified in this study for the first time in Heliconius , could play a vital role in their behavior and evolution by vertical transmission. Altogether, our study represents a step forward into the description of the microbial diversity in a charismatic group of closely related butterflies.
more »
« less
Impact of pollen-feeding on egg-laying and cyanogenic glucoside abundance in red postman butterflies
Growth, development and reproduction in animals are all limited by dietary nutrients. Expansion of an organism’s diet to sources not accessible to closely related species reduces food competition, and eases the constraints of nutrient limited diets. Adult butterflies are herbivorous insects known to feed primarily on nectar from flowers, which is rich in sugars but poor in amino acids. Only certain species in the genus Heliconius are known to also feed on pollen, which is especially rich in amino acids, and is known to prolong their lives by several months. The ability to digest pollen in Heliconius has been linked to specialized feeding behaviors (Krenn et al. 2009) and extra-oral digestion using enzymes, possibly including duplicated copies of cocoonase (Harpel et al. 2016; Smith et al. 2016 and 2018), a protease used by some moths to digest silk upon eclosion from their cocoons. In this reprint, Pinheiro de Castro and colleagues investigated the impact of artificial and natural diets on egg-laying ability, body weight, and cyanogenic glucoside abundance in adult Heliconius erato butterflies of both sexes.
more »
« less
- Award ID(s):
- 1656260
- PAR ID:
- 10507315
- Publisher / Repository:
- Peer Community in Evolutionary Biology
- Date Published:
- Journal Name:
- Peer Community in Evolutionary Biology
- ISSN:
- 2551-668X
- Subject(s) / Keyword(s):
- Heliconius pollen feeding cyanogenic glycosides plant-insect interactions
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Heliconius butterflies have bright patterns on their wings that tell potential predators that they are toxic. As a result, predators learn to avoid eating them. Over time, unrelated species of butterflies have evolved similar patterns to avoid predation through a process known as Müllerian mimicry. Worldwide, there are over 180,000 species of butterflies and moths, most of which have different wing patterns. How do genes create this pattern diversity? And do butterflies use similar genes to create similar wing patterns? One of the genes involved in creating wing patterns is called cortex . This gene has a large region of DNA around it that does not code for proteins, but instead, controls whether cortex is on or off in different parts of the wing. Changes in this non-coding region can act like switches, turning regions of the wing into different colours and creating complex patterns, but it is unclear how these switches have evolved. Butterfly wings get their colour from tiny structures called scales, which each have their own unique set of pigments. In Heliconius butterflies, there are three types of scales: yellow/white scales, black scales, and red/orange/brown scales. Livraghi et al. used a DNA editing technique called CRISPR to find out whether the cortex gene affects scale type. First, Livraghi et al. confirmed that deleting cortex turned black and red scales yellow. Next, they used the same technique to manipulate the non-coding DNA around the cortex gene to see the effect on the wing pattern. This manipulation turned a black-winged butterfly into a butterfly with a yellow wing band, a pattern that occurs naturally in Heliconius butterflies. The next step was to find the mutation responsible for the appearance of yellow wing bands in nature. It turns out that a bit of extra genetic code, derived from so-called ‘jumping genes’, had inserted itself into the non-coding DNA around the cortex gene, ‘flipping’ the switch and leading to the appearance of the yellow scales. Genetic information contains the instructions to generate shape and form in most organisms. These instructions evolve over millions of years, creating everything from bacteria to blue whales. Butterfly wings are visual evidence of evolution, but the way their genes create new patterns isn't specific to butterflies. Understanding wing patterns can help researchers to learn how genetic switches control diversity across other species too.more » « less
-
ABSTRACT In true color vision, animals discriminate between light wavelengths, regardless of intensity, using at least two photoreceptors with different spectral sensitivity peaks. Heliconius butterflies have duplicate UV opsin genes, which encode ultraviolet and violet photoreceptors, respectively. In Heliconius erato, only females express the ultraviolet photoreceptor, suggesting females (but not males) can discriminate between UV wavelengths. We tested the ability of H. erato, and two species lacking the violet receptor, Heliconius melpomene and Eueides isabella, to discriminate between 380 and 390 nm, and between 400 and 436 nm, after being trained to associate each stimulus with a sugar reward. We found that only H. erato females have color vision in the UV range. Across species, both sexes show color vision in the blue range. Models of H. erato color vision suggest that females have an advantage over males in discriminating the inner UV-yellow corollas of Psiguria flowers from their outer orange petals. Moreover, previous models ( McCulloch et al., 2017) suggested that H. erato males have an advantage over females in discriminating Heliconius 3-hydroxykynurenine (3-OHK) yellow wing coloration from non-3-OHK yellow wing coloration found in other heliconiines. These results provide some of the first behavioral evidence for female H. erato UV color discrimination in the context of foraging, lending support to the hypothesis ( Briscoe et al., 2010) that the duplicated UV opsin genes function together in UV color vision. Taken together, the sexually dimorphic visual system of H. erato appears to have been shaped by both sexual selection and sex-specific natural selection.more » « less
-
Wei, Fuwen (Ed.)Abstract Neotropical Heliconius butterflies are well known for their intricate behaviors and multiple instances of incipient speciation. Chemosensing plays a fundamental role in the life history of these groups of butterflies and in the establishment of reproductive isolation. However, chemical communication involves synergistic sensory and accessory functions, and it remains challenging to investigate the molecular mechanisms underlying behavioral differences. Here, we examine the gene expression profiles and genomic divergence of three sensory tissues (antennae, legs, and mouthparts) between sexes (females and males) and life stages (different adult stages) in two hybridizing butterflies, Heliconius melpomene and Heliconius cydno. By integrating comparative transcriptomic and population genomic approaches, we found evidence of widespread gene expression divergence, supporting a crucial role of sensory tissues in the establishment of species barriers. We also show that sensory diversification increases in a manner consistent with evolutionary divergence based on comparison with the more distantly related species Heliconius charithonia. The findings of our study strongly support the unique chemosensory function of antennae in all three species, the importance of the Z chromosome in interspecific divergence, and the nonnegligible role of nonchemosensory genes in the divergence of chemosensory tissues. Collectively, our results provide a genome-wide illustration of diversification in the chemosensory system under incomplete reproductive isolation, revealing strong molecular separation in the early stage of speciation. Here, we provide a unique perspective and relevant view of the genetic architecture (sensory and accessory functions) of chemosensing beyond the classic chemosensory gene families, leading to a better understanding of the magnitude and complexity of molecular changes in sensory tissues that contribute to the establishment of reproductive isolation and speciation.more » « less
-
Chang, Belinda (Ed.)Abstract The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.more » « less
An official website of the United States government

