skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wall Matters: Rethinking the Effect of Wall for Wireless Sensing
Wireless sensing has demonstrated its potential of utilizing radio frequency (RF) signals to sense individuals and objects. Among different wireless signals, LoRa signal is particularly promising for through-wall sensing owing to its strong penetration capability. However, existing works view walls as a bad thing as they attenuate signal power and decrease the sensing coverage. In this paper, we show a counter-intuitive observation, i.e., walls can be used to increase the sensing coverage if the RF devices are placed properly with respect to walls. To fully understand the underlying principle behind this observation, we develop a through-wall sensing model to mathematically quantify the effect of walls. We further show that besides increasing the sensing coverage, we can also use the wall to help mitigate interference, which is one well-known issue in wireless sensing. We demonstrate the effect of wall through two representative applications, i.e., macro-level human walking sensing and micro-level human respiration monitoring. Comprehensive experiments show that by properly deploying the transmitter and receiver with respect to the wall, the coverage of human walking detection can be expanded by more than 160%. By leveraging the effect of wall to mitigate interference, we can sense the tiny respiration of target even in the presence of three interferers walking nearby.  more » « less
Award ID(s):
2144668
PAR ID:
10507422
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
7
Issue:
4
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Treadmill running is a common workout for individuals across fitness levels. In this paper, we propose mm-RunAssist, a first-of-its-kind mmWave-based system that enhances treadmill workouts by monitoring respiration waveforms, running rhythm (i.e., coordination between breathing and strides), and detecting fall-off events. Extracting respiration from moving subjects using RF signals is challenging due to dominant motion artifacts. While prior deep learning efforts use adversarial or contrastive learning to mitigate such artifacts, they have been evaluated primarily under low-intensity activities like walking. To address this gap, mm-RunAssist introduces a Dual-task Variational U-Net that shares latent representations between respiration and upper-body movement tracking. This dual-task setup, guided by belt and depth sensors during training, improves reconstruction under intense body motion. Our system not only recovers fine-grained respiratory patterns during running but also supports cadence analysis through arm swing tracking. Extensive experiments with three state-of-the-art baselines under various conditions demonstrate mm-RunAssist's robustness and accuracy in treadmill running scenarios. Results show that mm-RunAssist advances RF sensing by effectively extracting vital signs even during vigorous body movements, offering new capabilities for fitness monitoring and non-intrusive health assessment. 
    more » « less
  2. Video scene analysis is a well-investigated area where researchers have devoted efforts to detect and classify people and objects in the scene. However, real-life scenes are more complex: the intrinsic states of the objects (e.g., machine operating states or human vital signals) are often overlooked by vision-based scene analysis. Recent work has proposed a radio frequency (RF) sensing technique, wireless vibrometry, that employs wireless signals to sense subtle vibrations from the objects and infer their internal states. We envision that the combination of video scene analysis with wireless vibrometry form a more comprehensive understanding of the scene, namely "rich scene analysis". However, the RF sensors used in wireless vibrometry only provide time series, and it is challenging to associate these time series data with multiple real-world objects. We propose a real-time RF-vision sensor fusion system, Capricorn, that efficiently builds a cross-modal correspondence between visual pixels and RF time series to better understand the complex natures of a scene. The vision sensors in Capricorn model the surrounding environment in 3D and obtain the distances of different objects. In the RF domain, the distance is proportional to the signal time-of-flight (ToF), and we can leverage the ToF to separate the RF time series corresponding to each object. The RF-vision sensor fusion in Capricorn brings multiple benefits. The vision sensors provide environmental contexts to guide the processing of RF data, which helps us select the most appropriate algorithms and models. Meanwhile, the RF sensor yields additional information that is originally invisible to vision sensors, providing insight into objects' intrinsic states. Our extensive evaluations show that Capricorn real-timely monitors multiple appliances' operating status with an accuracy of 97%+ and recovers vital signals like respirations from multiple people. A video (https://youtu.be/b-5nav3Fi78) demonstrates the capability of Capricorn. 
    more » « less
  3. Internet-of-things (IoT) devices (e.g., micro camera and microphone) are usually small form factor, low-cost, and low-power, which makes them easy to conceal and deploy in the indoor environment to spy on people for human private information such as location and indoor activities. As a result, these IoT devices introduce a great privacy and ethical threat. Therefore, it is important to reveal these concealed IoT devices in the indoor environment for human privacy protection. This paper presents RFScan, a system that can passively detect, fingerprint, and localize diverse concealed IoT devices in the indoor environment by sensing their unintentional electromagnetic emanations. However, sensing these emanations is challenging due to the weak emanation strength and the interference from the ambient wireless communication signals. To this end, we boost the emanation strength through the non-coherent averaging based on the emanation signal's characteristics and design a novel suppression algorithm to mitigate interference from the wireless communication signals. We further profile emanations across frequency and time that act as the emanation source's unique signature and customize a deep neural network architecture to fingerprint the emanation sources. Furthermore, we can localize the emanation source with an angle-of-arrival (AoA) based triangulation approach. Our experimental results demonstrate the efficiency of the IoT devices' detection, fingerprinting, and localization across different indoor environments. 
    more » « less
  4. In our ever-expanding world of advanced satellite and communications systems, there's a growing challenge for passive radiometer sensors used in the Earth observation like 5G. These passive sensors are challenged by risks from radio frequency interference (RFI) caused by anthropogenic signals. To address this, we urgently need effective methods to quantify the impacts of 5G on Earth observing radiometers. Unfortunately, the lack of substantial datasets in the radio frequency (RF) domain, especially for active/passive coexistence, hinders progress. Our study introduces a controlled testbed featuring a calibrated L-band radiometer and a 5G wireless communication system. In a controlled chamber, this unique setup allows us to observe and quantify transmission effects across different frequency bands. By creating a comprehensive dataset, we aim to standardize and benchmark both wireless communication and passive sensing. With the ability to analyze raw measurements, our testbed facilitates RFI detection and mitigation, fostering the coexistence of wireless communication and passive sensing technologies while establishing crucial standards. 
    more » « less
  5. Signal anomaly detection is commonly used to detect rogue or unexpected signals. It has many applications in interference mitigation, wireless security, optimized spectrum allocation, and radio coordination. Our work proposes a new method for anomaly detection on signal detection metadata using generative adversarial network output processed by a long short term memory recurrent neural network. We provide a performance analysis and comparison to baseline methods, and demonstrate that through the usage of metadata for analytics, we can provide robust detection, while also minimizing computation and bandwidth, and generalizing to numerous effects which differs from many prior works that focus on A.D. based signal processing on the raw RF sample data. 
    more » « less