We conducted a spectral analysis of the turbulence kinetic energy (TKE) budget in a bubble plume using particle image velocimetry with fluorescent particles. Our findings confirmed the hypothesis of an inverse energy cascade in the bubble plume, where TKE is transferred from small to large eddies. This is attributed to direct injection of TKE by bubble passages across a wide range of scales, in contrast to canonical shear production of TKE in large scales. Turbulence dissipation was identified as the primary sink of the bubble-produced TKE and occurred at all scales. The decomposition of velocities using the critical length scale of inter-scale energy transfer allowed us to distinguish between large- and small-scale motions in the bubble plume. The large-scale turbulent fluctuations exhibited a skewed distribution and were likely associated with the return flow after bubble passage and the velocities induced by the bubble wake. The small-scale turbulent fluctuations followed a Gaussian distribution relatively well. The large-scale motions contributed to over half of the Reynolds stresses, while there were significant small-scale contributions to the normal stresses near the plume center but not to the shear stress. The large-scale motions in the vorticity field induced a street of vertically elongated vortex pairs, while the small-scale vortices exhibited similar sizes in both horizontal and vertical directions.
This content will become publicly available on March 21, 2025
Fully developed turbulence is a universal and scale-invariant chaotic state characterized by an energy cascade from large to small scales at which the cascade is eventually arrested by dissipation1–6. Here we show how to harness these seemingly structureless turbulent cascades to generate patterns. Pattern formation entails a process of wavelength selection, which can usually be traced to the linear instability of a homogeneous state7. By contrast, the mechanism we propose here is fully nonlinear. It is triggered by the non-dissipative arrest of turbulent cascades: energy piles up at an intermediate scale, which is neither the system size nor the smallest scales at which energy is usually dissipated. Using a combination of theory and large-scale simulations, we show that the tunable wavelength of these cascade-induced patterns can be set by a non-dissipative transport coefficient called odd viscosity, ubiquitous in chiral fluids ranging from bioactive to quantum systems8–12. Odd viscosity, which acts as a scale-dependent Coriolis-like force, leads to a two-dimensionalization of the flow at small scales, in contrast with rotating fluids in which a two-dimensionalization occurs at large scales4. Apart from odd viscosity fluids, we discuss how cascade-induced patterns can arise in natural systems, including atmospheric flows13–19, stellar plasma such as the solar wind20–22, or the pulverization and coagulation of objects or droplets in which mass rather than energy cascades23–25.
more » « less- PAR ID:
- 10507493
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature
- Volume:
- 627
- Issue:
- 8004
- ISSN:
- 0028-0836
- Page Range / eLocation ID:
- 515 to 521
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Submesoscale currents and internal gravity waves achieve an intense turbulent cascade near the ocean surface [depth of 0–
O (100) m], which is thought to give rise to significant energy sources and sinks for mesoscale eddies. Here, we characterize the contributions of nonwave currents (NWCs; including eddies and fronts) and internal gravity waves (IGWs; including near-inertial motions, lee waves, and the internal wave continuum) to near-surface submesoscale turbulence in the Drake Passage. Using a numerical simulation, we combine Lagrangian filtering and a Helmholtz decomposition to identify NWCs and IGWs and to characterize their dynamics (rotational versus divergent). We show that NWCs and IGWs contribute in different proportions to the inverse and forward turbulent kinetic energy cascades, based on their dynamics and spatiotemporal scales. Purely rotational NWCs cause most of the inverse cascade, while coupled rotational–divergent components of NWCs and coupled NWC–IGWs cause the forward cascade. The cascade changes direction at a spatial scale at which motions become increasingly divergent. However, the forward cascade is ultimately limited by the motions’ spatiotemporal scales. The bulk of the forward cascade (80%–95%) is caused by NWCs and IGWs of small spatiotemporal scales (L < 10 km;T < 6 h), which are primarily rotational: submesoscale eddies, fronts, and the internal wave continuum. These motions also cause a significant part of the inverse cascade (30%). Our results highlight the requirement for high spatiotemporal resolutions to diagnose the properties and large-scale impacts of near-surface submesoscale turbulence accurately, with significant implications for ocean energy cycle study strategies. -
null (Ed.)Turbulent flows are out-of-equilibrium because the energy supply at large scales and its dissipation by viscosity at small scales create a net transfer of energy among all scales. This energy cascade is modelled by approximating the spectral energy balance with a nonlinear Fokker–Planck equation consistent with accepted phenomenological theories of turbulence. The steady-state contributions of the drift and diffusion in the corresponding Langevin equation, combined with the killing term associated with the dissipation, induce a stochastic energy transfer across wavenumbers. The fluctuation theorem is shown to describe the scale-wise statistics of forward and backward energy transfer and their connection to irreversibility and entropy production. The ensuing turbulence entropy is used to formulate an extended turbulence thermodynamics.more » « less
-
One of the most controversial topics in the field of convection in porous media is the issue of macroscopic turbulence. It remains unclear whether it can occur in porous media. It is difficult to carry out velocity measurements within porous media, as they are typically optically opaque. At the same time, it is now possible to conduct a definitive direct numerical simulation (DNS) study of this phenomenon. We examine the processes that take place in porous media at large Reynolds numbers, attempting to accurately describe them and analyze whether they can be labeled as true turbulence. In contrast to existing work on turbulence in porous media, which relies on certain turbulence models, DNS allows one to understand the phenomenon in all its complexity by directly resolving all the scales of motion. Our results suggest that the size of the pores determines the maximum size of the turbulent eddies. If the size of turbulent eddies cannot exceed the size of the pores, then turbulent phenomena in porous media differ from turbulence in clear fluids. Indeed, this size limitation must have an impact on the energy cascade, for in clear fluids the turbulent kinetic energy is predominantly contained within large eddies.more » « less
-
Elasticity typically refers to a material's ability to store energy, whereas viscosity refers to a material's tendency to dissipate it. In this review, we discuss fluids and solids for which this is not the case. These materials display additional linear response coefficients known as odd viscosity and odd elasticity. We first introduce odd viscosity and odd elasticity from a continuum perspective, with an emphasis on their rich phenomenology, including transverse responses, modified dislocation dynamics, and topological waves. We then provide an overview of systems that display odd viscosity and odd elasticity. These systems range from quantum fluids and astrophysical gases to active and driven matter. Finally, we comment on microscopic mechanisms by which odd viscosity and odd elasticity arise.more » « less