skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying Flare-indicative Photospheric Magnetic Field Parameters from Multivariate Time-series Data of Solar Active Regions
Abstract Photospheric magnetic field parameters are frequently used to analyze and predict solar events. Observation of these parameters over time, i.e., representing solar events by multivariate time-series (MVTS) data, can determine relationships between magnetic field states in active regions and extreme solar events, e.g., solar flares. We can improve our understanding of these events by selecting the most relevant parameters that give the highest predictive performance. In this study, we propose a two-step incremental feature selection method for MVTS data using a deep-learning model based on long short-term memory (LSTM) networks. First, each MVTS feature (magnetic field parameter) is evaluated individually by a univariate sequence classifier utilizing an LSTM network. Then, the top performing features are combined to produce input for an LSTM-based multivariate sequence classifier. Finally, we tested the discrimination ability of the selected features by training downstream classifiers, e.g., Minimally Random Convolutional Kernel Transform and support vector machine. We performed our experiments using a benchmark data set for flare prediction known as Space Weather Analytics for Solar Flares. We compared our proposed method with three other baseline feature selection methods and demonstrated that our method selects more discriminatory features compared to other methods. Due to the imbalanced nature of the data, primarily caused by the rarity of minority flare classes (e.g., the X and M classes), we used the true skill statistic as the evaluation metric. Finally, we reported the set of photospheric magnetic field parameters that give the highest discrimination performance in predicting flare classes.  more » « less
Award ID(s):
2301397 2305781 2240022 2204363
PAR ID:
10507662
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
271
Issue:
2
ISSN:
0067-0049
Page Range / eLocation ID:
39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The purpose of this study is to provide a comprehensive resource for the selection of data representations for machine learning-oriented models and components in solar flare prediction tasks. Major solar flares occurring in the solar corona and heliosphere can bring potential destructive consequences, posing significant risks to astronauts, space stations, electronics, communication systems, and numerous technological infrastructures. For this reason, the accurate detection of major flares is essential for mitigating these hazards and ensuring the safety of our technology-dependent society. In response, leveraging machine learning techniques for predicting solar flares has emerged as a significant application within the realm of data science, relying on sensor data collected from solar active region photospheric magnetic fields by space- and ground-based observatories. In this research, three distinct solar flare prediction strategies utilizing the photospheric magnetic field parameter-based multivariate time series dataset are evaluated, with a focus on data representation techniques. Specifically, we examine vector-based, time series-based, and graph-based approaches to identify the most effective data representation for capturing key characteristics of the dataset. The vector-based approach condenses multivariate time series into a compressed vector form, the time series representation leverages temporal patterns, and the graph-based method models interdependencies between magnetic field parameters. The results demonstrate that the vector representation approach exhibits exceptional robustness in predicting solar flares, consistently yielding strong and reliable classification outcomes by effectively encapsulating the intricate relationships within photospheric magnetic field data when coupled with appropriate downstream machine learning classifiers. 
    more » « less
  2. Solar flares are characterized by sudden bursts of electromagnetic radiation from the Sun’s surface, and are caused by the changes in magnetic field states in active solar regions. Earth and its surrounding space environment can suffer from various negative impacts caused by solar flares, ranging from electronic communication disruption to radiation exposure-based health risks to astronauts. In this paper, we address the solar flare prediction problem from magnetic field parameter-based multivariate time series (MVTS) data using multiple state-of-the-art machine learning classifiers that include MINImally RandOm Convolutional KErnel Transform (MiniRocket), Support Vector Machine (SVM), Canonical Interval Forest (CIF), Multiple Representations Sequence Learner (Mr-SEQL), and a Long Short-Term Memory (LSTM)-based deep learning model. Our experiment is conducted on the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set, which is a partitioned collection of MVTS data of active region magnetic field parameters spanning over nine years of operation of the Solar Dynamics Observatory (SDO). The MVTS instances of the SWAN-SF dataset are labeled by GOES X-ray flux-based flare class labels, and attributed to extreme class imbalance because of the rarity of the major flaring events (e.g., X and M). As a performance validation metric in this class-imbalanced dataset, we used the True Skill Statistic (TSS) score. Finally, we demonstrate the advantages of the MVTS learning algorithm MiniRocket, which outperformed the aforementioned classifiers without the need for essential data preprocessing steps such as normalization, statistical summarization, and class imbalance handling heuristics. 
    more » « less
  3. Abstract Magnetic reconnection is regarded as the mechanism for the rapid release of magnetic energy stored in active regions during solar flares, and quantitative measurements of the magnetic reconnection rate are essential for understanding solar flares. In the context of the standard two-ribbon flare model, we derive the coronal magnetic reconnection rate of the M6.5 flare on 2015 June 22 in two terms, reconnection flux change rate and reconnection electric field, both of which can be obtained from observations of the flare morphology. Data used include a sequence of chromospheric H α images with unprecedented resolution during the flare from the Visual Imaging Spectrometer of the Goode Solar Telescope (GST) at the Big Bear Solar Observatory and a preflare line-of-sight photospheric magnetogram from the GST Near-InfraRed Imaging Spectropolarimeter along with hard X-ray data from the Ramaty High Energy Solar Spectroscopic Imager. The temporal correlation between the magnetic reconnection rate and nonthermal emission is found, and the variation of the reconnection electric field is mainly determined by the ribbon speed, not by the local magnetic field encountered by the ribbon front. Spatially, the hard X-ray source overlaps with the location of the strongest electric field obtained at the same time. The ribbon motion shows abundant fine structures, including a local acceleration at the location of a light bridge with a weaker magnetic field. 
    more » « less
  4. Abstract The accurate prediction of solar flares is crucial due to their risks to astronauts, space equipment, and satellite communication systems. Our research enhances solar flare prediction by employing sophisticated data preprocessing and sampling techniques for the Space Weather Analytics for Solar Flares (SWAN-SF) data set, a rich source of multivariate time series data of solar active regions. Our study adopts a multifaceted approach encompassing four key methodologies. Initially, we address over 10 million missing values in the SWAN-SF data set through our innovative imputation technique called fast Pearson correlation-based k-nearest neighbors imputation. Subsequently, we propose a precise normalization technique, called LSBZM normalization, tailored for time series data, merging various strategies (log, square root, Box–Cox, Z-score, and min–max) to uniformly scale the data set's 24 attributes (photospheric magnetic field parameters), addressing issues such as skewness. We also explore the “near decision boundary sample removal” technique to enhance the classification performance of the data set by effectively resolving the challenge of class overlap. Finally, a pivotal aspect of our research is a thorough evaluation of diverse oversampling and undersampling methods, including SMOTE, ADASYN, Gaussian noise injection, TimeGAN, Tomek links, and random undersampling, to counter the severe imbalance in the SWAN-SF data set, notably a 60:1 ratio of major (X and M) to minor (C, B, and FQ) flaring events in binary classification. To demonstrate the effectiveness of our methods, we use eight classification algorithms, including advanced deep-learning-based architectures. Our analysis shows significant true skill statistic scores, underscoring the importance of data preprocessing and sampling in time-series-based solar flare prediction. 
    more » « less
  5. Using non-linear force free field (NLFFF) extrapolation, 3D magnetic fields were modeled from the 12-min cadence Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI) photospheric vector magnetograms, spanning a time period of 1 hour before through 1 hour after the start of 18 X-class and 12 M-class solar flares. Several magnetic field parameters were calculated from the modeled fields directly, as well as from the power spectrum of surface maps generated by summing the fields along the vertical axis, for two different regions: areas with photospheric |Bz|≥ 300 G (active region—AR) and areas above the photosphere with the magnitude of the non-potential field (BNP) greater than three standard deviations above | B N P | ̄ of the AR field and either the unsigned twist number |Tw| ≥ 1 turn or the shear angle Ψ ≥ 80° (non-potential region—NPR). Superposed epoch (SPE) plots of the magnetic field parameters were analyzed to investigate the evolution of the 3D solar field during the solar flare events and discern consistent trends across all solar flare events in the dataset, as well as across subsets of flare events categorized by their magnetic and sunspot classifications. The relationship between different flare properties and the magnetic field parameters was quantitatively described by the Spearman ranking correlation coefficient, rs. The parameters that showed the most consistent and discernable trends among the flare events, particularly for the hour leading up to the eruption, were the total unsigned fluxϕ), free magnetic energy (EFree), total unsigned magnetic twist (τTot), and total unsigned free magnetic twist (ρTot). Strong (|rs| ∈ [0.6, 0.8)) to very strong (|rs| ∈ [0.8, 1.0]) correlations were found between the magnetic field parameters and the following flare properties: peak X-ray flux, duration, rise time, decay time, impulsiveness, and integrated flux; the strongest correlation coefficient calculated for each flare property was 0.62, 0.85, 0.73, 0.82, −0.81, and 0.82, respectively. 
    more » « less