skip to main content


This content will become publicly available on May 10, 2025

Title: Analysis of modeled 3D solar magnetic field during 30 X/M-class solar flares

Using non-linear force free field (NLFFF) extrapolation, 3D magnetic fields were modeled from the 12-min cadence Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI) photospheric vector magnetograms, spanning a time period of 1 hour before through 1 hour after the start of 18 X-class and 12 M-class solar flares. Several magnetic field parameters were calculated from the modeled fields directly, as well as from the power spectrum of surface maps generated by summing the fields along the vertical axis, for two different regions: areas with photospheric |Bz|≥ 300 G (active region—AR) and areas above the photosphere with the magnitude of the non-potential field (BNP) greater than three standard deviations above|BNP|̄of the AR field and either the unsigned twist number |Tw| ≥ 1 turn or the shear angle Ψ ≥ 80° (non-potential region—NPR). Superposed epoch (SPE) plots of the magnetic field parameters were analyzed to investigate the evolution of the 3D solar field during the solar flare events and discern consistent trends across all solar flare events in the dataset, as well as across subsets of flare events categorized by their magnetic and sunspot classifications. The relationship between different flare properties and the magnetic field parameters was quantitatively described by the Spearman ranking correlation coefficient, rs. The parameters that showed the most consistent and discernable trends among the flare events, particularly for the hour leading up to the eruption, were the total unsigned fluxϕ), free magnetic energy (EFree), total unsigned magnetic twist (τTot), and total unsigned free magnetic twist (ρTot). Strong (|rs| ∈ [0.6, 0.8)) to very strong (|rs| ∈ [0.8, 1.0]) correlations were found between the magnetic field parameters and the following flare properties: peak X-ray flux, duration, rise time, decay time, impulsiveness, and integrated flux; the strongest correlation coefficient calculated for each flare property was 0.62, 0.85, 0.73, 0.82, −0.81, and 0.82, respectively.

 
more » « less
Award ID(s):
2108235 2309939
PAR ID:
10513027
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Frontiers in Astronomy and Space Sciences
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
11
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (βp= 0.25) collisionless ion–electron shocks with mass ratiomi/me= 200, fast Mach numberMms=1–4, and upstream magnetic field angleθBn= 55°–85° from the shock normalnˆ. It is known that shock electron heating is described by an ambipolar,B-parallel electric potential jump, Δϕ, that scales roughly linearly with the electron temperature jump. Our simulations haveΔϕ/(0.5miush2)0.1–0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕin our low-βpshocks. We further focus on twoθBn= 65° shocks: aMs=4(MA=1.8) case with a long, 30diprecursor of whistler waves alongnˆ, and aMs=7(MA=3.2) case with a shorter, 5diprecursor of whistlers oblique to bothnˆandB;diis the ion skin depth. Within the precursors,ϕhas a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of theMs=4,θBn= 65° case,ϕshows a weak dependence on the electron plasma-to-cyclotron frequency ratioωpece, andϕdecreases by a factor of 2 asmi/meis raised to the true proton–electron value of 1836.

     
    more » « less
  2. The coronal magnetic field over NOAA Active Region 11,429 during a X5.4 solar flare on 7 March 2012 is modeled using optimization based Non-Linear Force-Free Field extrapolation. Specifically, 3D magnetic fields were modeled for 11 timesteps using the 12-min cadence Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager photospheric vector magnetic field data, spanning a time period of 1 hour before through 1 hour after the start of the flare. Using the modeled coronal magnetic field data, seven different magnetic field parameters were calculated for 3 separate regions: areas with surface | B z |≥ 300 G, areas of flare brightening seen in SDO Atmospheric Imaging Assembly imagery, and areas with surface | B | ≥ 1000 G and high twist. Time series of the magnetic field parameters were analyzed to investigate the evolution of the coronal field during the solar flare event and discern pre-eruptive signatures. The data shows that areas with | B | ≥ 1000 G and | T w |≥ 1.5 align well with areas of initial flare brightening during the pre-flare phase and at the beginning of the eruptive phase of the flare, suggesting that measurements of the photospheric magnetic field strength and twist can be used to predict the flare location within an active region if triggered. Additionally, the evolution of seven investigated magnetic field parameters indicated a destabilizing magnetic field structure that could likely erupt. 
    more » « less
  3. Abstract

    Fueling and feedback couple supermassive black holes (SMBHs) to their host galaxies across many orders of magnitude in spatial and temporal scales, making this problem notoriously challenging to simulate. We use a multi-zone computational method based on the general relativistic magnetohydrodynamic (GRMHD) code KHARMA that allows us to span 7 orders of magnitude in spatial scale, to simulate accretion onto a non-spinning SMBH from an external medium with a Bondi radius ofRB≈ 2 × 105GM/c2, whereMis the SMBH mass. For the classic idealized Bondi problem, spherical gas accretion without magnetic fields, our simulation results agree very well with the general relativistic analytic solution. Meanwhile, when the accreting gas is magnetized, the SMBH magnetosphere becomes saturated with a strong magnetic field. The density profile varies as ∼r−1rather thanr−3/2and the accretion rateṀis consequently suppressed by over 2 orders of magnitude below the Bondi rateṀB. We find continuous energy feedback from the accretion flow to the external medium at a level of102Ṁc25×105ṀBc2. Energy transport across these widely disparate scales occurs via turbulent convection triggered by magnetic field reconnection near the SMBH. Thus, strong magnetic fields that accumulate on horizon scales transform the flow dynamics far from the SMBH and naturally explain observed extremely low accretion rates compared to the Bondi rate, as well as at least part of the energy feedback.

     
    more » « less
  4. Abstract

    Magnetized plasma columns and extended magnetic structures with both footpoints anchored to a surface layer are an important building block of astrophysical dissipation models. Current loops shining in X-rays during the growth of plasma instabilities are observed in the corona of the Sun and are expected to exist in highly magnetized neutron star magnetospheres and accretion disk coronae. For varying twist and system sizes, we investigate the stability of line-tied force-free flux tubes and the dissipation of twist energy during instabilities using linear analysis and time-dependent force-free electrodynamics simulations. Kink modes (m= 1) and efficient magnetic energy dissipation develop for plasma safety factorsq≲ 1, whereqis the inverse of the number of magnetic field line windings per column length. Higher-order fluting modes (m> 1) can distort equilibrium flux tubes forq> 1 but induce significantly less dissipation. In our analysis, the characteristic pitchμ˜0of flux-tube field lines determines the growth rate (μ˜03) and minimum wavelength of the kink instability (μ˜01). We use these scalings to determine a minimum flux tube length for the growth of the kink instability for any givenμ˜0. By drawing analogies to idealized magnetar magnetospheres with varying regimes of boundary shearing rates, we discuss the expected impact of the pitch-dependent growth rates for magnetospheric dissipation in magnetar conditions.

     
    more » « less
  5. Abstract

    We present a theory based on the conventional two-term (i.e. Lorentzian) approximation to the exact solution of the Boltzmann equation in non-magnetized weakly ionized plasma to efficiently obtain the electron rate and transport coefficients in a magnetized plasma for an arbitrary magnitude and direction of applied electric fieldEand magnetic fieldB. The proposed transcendental method does not require the two-term solution of the Boltzmann equation in magnetized plasma, based on which the transport parameters vary as a function of the reduced electric fieldE/N, reduced electron cyclotron frequencyωce/N, and angleE,BbetweenEandBvectors, whereNis the density of neutrals. Comparisons between the coefficients derived from BOLSIG+’s solution (obtained via the two-term expansion whenB0) and coefficients of the presented method are illustrated for air, a mixture of molecular hydrogen (H2) and helium (He) representing the giant gas planets of the Solar System, and pure carbon dioxide (CO2). The new approach may be used in the modeling of magnetized plasma encountered in the context of transient luminous events, e.g. sprite streamers in the atmosphere of Earth and Jupiter, in modeling the propagation of lightning’s electromagnetic pulses in Earth’s ionosphere, and in various laboratory and industrial applications of nonthermal plasmas.

     
    more » « less