Abstract We present the results of a comprehensive, near-UV-to-near-IR Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) imaging study of the young planetary nebula (PN) NGC 6302, the archetype of the class of extreme bilobed, pinched-waist PNe that are rich in dust and molecular gas. The new WFC3 emission-line image suite clearly defines the dusty toroidal equatorial structure that bisects NGC 6302's polar lobes, and the fine structures (clumps, knots, and filaments) within the lobes. The most striking aspect of the new WFC3 image suite is the bright, S-shaped 1.64 μ m [Fe ii ] emission that traces the southern interior of the east lobe rim and the northern interior of the west lobe rim, in point-symmetric fashion. We interpret this [Fe ii ] emitting region as a zone of shocks caused by ongoing, fast (∼100 km s −1 ), collimated, off-axis winds from NGC 6302's central star(s). The [Fe ii ] emission and a zone of dusty, N- and S-rich clumps near the nebular symmetry axis form wedge-shaped structures on opposite sides of the core, with boundaries marked by sharp azimuthal ionization gradients. Comparison of our new images with earlier HST/WFC3 imaging reveals that the object previously identified as NGC 6302's central star is a foreground field star. Shell-like inner lobe features may instead pinpoint the obscured central star’s actual position within the nebula’s dusty central torus. The juxtaposition of structures revealed in this HST/WFC3 imaging study of NGC 6302 presents a daunting challenge for models of the origin and evolution of bipolar PNe.
more »
« less
NGC 6302: The Tempestuous Life of a Butterfly
Abstract NGC 6302 (The Butterfly Nebula) is an extremely energetic and rapidly expanding bipolar planetary nebula (PN). If the central source is a single star, then its apparent location in an H-R diagram places it among the most massive, hottest, and presumably rapidly evolving of all central stars of PNe. Our proper motion study of NGC 6302, based on Hubble Space Telescope WFC3 images spanning 11 yr, has uncovered at least four different pairs of uniformly expanding internal lobes ejected at various times and orientations over the past two millennia at speeds ranging from 10–600 km s−1. In addition, we find a pair of collimated off-axis flows in constant motion at ∼770 ± 100 km s−1within which bright [Feii]feathersare conspicuous. Combining our results with those previously published, we find that the ensemble of flows has an ionized mass >0.1M⊙and its kinetic energy, between 1046and 1048erg, lies at the upper end of gravity-powered PNe ejection processes such as stellar mergers or mass accretion. We assemble our results into a plausible historical timeline of ejections from the nucleus and suggest that the ejections are powered by gravitational infall.
more »
« less
- Award ID(s):
- 2206033
- PAR ID:
- 10507690
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 957
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 54
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aims.We perform a deep survey of planetary nebulae (PNe) in the spiral galaxy NGC 300 to construct its planetary nebula luminosity function (PNLF). We aim to derive the distance using the PNLF and to probe the characteristics of the most luminous PNe. Methods.We analysed 44 fields observed with MUSE at the VLT, covering a total area of ∼11 kpc2. We find [O III]λ5007 sources using the differential emission line filter (DELF) technique. We identified PNe through spectral classification with the aid of the BPT diagram. The PNLF distance was derived using the maximum likelihood estimation technique. For the more luminous PNe, we also measured their extinction using the Balmer decrement. We estimated the luminosity and effective temperature of the central stars of the luminous PNe based on estimates of the excitation class and the assumption of optically thick nebulae. Results.We identify 107 PNe and derive a most-likely distance modulus $$ (m-M)_0 = 26.48^{+0.11}_{-0.26} $$ ($$ d = 1.98^{+0.10}_{-0.23} $$ Mpc). We find that the PNe at the PNLF cutoff exhibit relatively low extinction, with some high-extinction cases caused by local dust lanes. We present the lower limit luminosities and effective temperatures of the central stars for some of the brighter PNe. We also identify a few Type I PNe that come from a young population with progenitor masses > 2.5 M⊙but do not populate the PNLF cutoff. Conclusions.The spatial resolution and spectral information of MUSE allow precise PN classification and photometry. These capabilities also enable us to resolve possible contamination by diffuse gas and dust, improving the accuracy of the PNLF distance to NGC 300.more » « less
-
Abstract The planetary nebula NGC 6720, also known as the “Ring Nebula,” is one of the most iconic examples of nearby planetary nebulae whose morphologies present a challenge to our theoretical understanding of the processes that govern the deaths of most stars in the Universe that evolve on a Hubble time. We present new imaging with JWST of the central star of this planetary nebula (CSPN) and its close vicinity, in the near-to-mid-IR wavelength range. We find the presence of a dust cloud around the CSPN, both from the spectral energy distribution at wavelengths ≳5μm as well as from radially extended emission in the 7.7, 10, and 11.3μm images. From the modeling of these data, we infer that the CSPN has a luminosity of 310L⊙and is surrounded by a dust cloud with a size of ∼2600 au, consisting of relatively small amorphous silicate dust grains (radius ∼0.01μm) with a total mass of 1.9 × 10−6M⊕. However, our best-fit model shows a significant lack of extended emission at 7.7μm—we show that such emission can arise from a smaller (7.3 × 10−7M⊕) but uncertain mass of (stochastically heated) ionized polycyclic aromatic hydrocarbon (PAHs). However, the same energetic radiation also rapidly destroys PAH molecules, suggesting that these are most likely being continuously replenished, via the outgassing of cometary bodies and/or the collisional grinding of planetesimals. We also find significant photometric variability of the central source that could be due to the presence of a close dwarf companion of mass ≤0.1M⊙.more » « less
-
Abstract We present an analysis of the Hα-emitting ionized gas in the warm phase of the NGC 253 outflow using integral field spectroscopy from the Multi Unit Spectroscopic Explorer. In each spaxel, we decompose Hα, [Nii], and [Sii] emission lines into a system of up to three Gaussian components, accounting for the velocity contributions due to the disk and both intercepted walls of an outflow cone. In the approaching southern lobe of the outflow, we find maximum deprojected outflow velocities down to ∼−500 km s−1. Velocity gradients of this outflowing gas range from ∼−350 to −550 km s−1kpc−1with increasing distance from the nucleus. Additionally, [Nii]/Hαand [Sii]/Hαintegrated line ratios are suggestive of shocks as the dominant ionization source throughout the wind. Electron densities, inferred from the [Sii] doublet, peak at 2100 cm−3near the nucleus and reach ≲50 cm−3in the wind. Finally, at an uncertainty of 0.3 dex on the inferred mass of 4 × 105M⊙, the mass-outflow rate of the Hα-emitting gas in the southern outflow lobe is ∼0.4M⊙yr−1. This yields a mass-loading factor ofη ∼ 0.1 and a ∼2% starburst energy efficiency.more » « less
-
Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations of CO(2–1) emission from the circumnuclear disks in two early-type galaxies, NGC 1380 and NGC 6861. The disk in each galaxy is highly inclined (i∼ 75°), and the projected velocities of the molecular gas near the galaxy centers are ∼300 km s−1in NGC 1380 and ∼500 km s−1in NGC 6861. We fit thin disk dynamical models to the ALMA data cubes to constrain the masses of the central black holes (BHs). We created host galaxy models using Hubble Space Telescope images for the extended stellar mass distributions and incorporated a range of plausible central dust extinction values. For NGC 1380, our best-fit model yieldsMBH= 1.47 × 108M⊙with a ∼40% uncertainty. For NGC 6861, the lack of dynamical tracers within the BH’s sphere of influence due to a central hole in the gas distribution precludes a precise measurement ofMBH. However, our model fits require a value forMBHin the range of (1–3) × 109M⊙in NGC 6861 to reproduce the observations. The BH masses are generally consistent with predictions from local BH–host galaxy scaling relations. Systematic uncertainties associated with dust extinction of the host galaxy light and choice of host galaxy mass model dominate the error budget of both measurements. Despite these limitations, the measurements demonstrate ALMA’s ability to provide constraints on BH masses in cases where the BH’s projected radius of influence is marginally resolved or the gas distribution has a central hole.more » « less
An official website of the United States government

