Large-scale and air-stable two-dimensional metal layers intercalated at the interface between epitaxial graphene and SiC offer an appealing material for quantum technology. The atomic and electronic details, as well as the control of the intercalated metals within the interface, however, remain very limited. In this Letter, we explored ultrathin indium confined between graphene and SiC using cryogenic scanning tunneling microscopy, complemented by first-principle density functional theory. Bias-dependent imaging and tunneling spectroscopy visualize a triangular superstructure with a periodicity of 14.7 ± 3 Å and an occupied state at about −1.6 eV, indicating proof of highly crystalline indium. The scanning tunneling microscopy tip was used to manipulate the number of indium layers below graphene, allowing to identify three monatomic In layers and to tune their corresponding electronic properties with atomic precision. This further allows us to attribute the observed triangular superstructure to be solely emerging from the In trilayer, tentatively explained by the lattice mismatch induced by lattice relaxation in the topmost In layer. Our findings provide a microscopic insight into the structure and electronic properties of intercalated metals within the graphene/SiC interface and a unique possibility to manipulate them with atomic precision using the scanning probe technique. 
                        more » 
                        « less   
                    
                            
                            Nano-infrared imaging of epitaxial graphene on SiC revealing doping and thickness inhomogeneities
                        
                    
    
            We report on a nano-infrared (IR) imaging and spectroscopy study of epitaxial graphene on silicon carbide (SiC) by using scattering-type scanning near-field optical microscopy (s-SNOM). With nano-IR imaging, we reveal in real space microscopic domains with distinct IR contrasts. By analyzing the nano-IR, atomic force microscopy, and scanning tunneling microscopy imaging data, we conclude that the imaged domains correspond to single-layer graphene, bilayer graphene (BLG), and higher-doped BLG. With nano-IR spectroscopy, we find that graphene can screen the SiC phonon resonance, and the screening is stronger at more conductive sample regions. Our work offers insights into the rich surface properties of epitaxial graphene and demonstrates s-SNOM as an efficient and effective tool in characterizing graphene and possibly other two-dimensional materials. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1945560
- PAR ID:
- 10507706
- Publisher / Repository:
- Applied Physics Letters
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 124
- Issue:
- 12
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            THz scattering-type scanning near-field microscopy (s-SNOM) has become a powerful technique for measuring carrier dynamics in nanoscale materials and structures. Changes in a material’s local THz reflection or transmission can be correlated to changes in electrical conductivity. Here, we perform tip-based THz nano-imaging of subwavelength gold nanostructures and demonstrate image contrast unrelated to any spatially varying material properties. We show that the specific physical configuration of the gold structures can have a strong influence on local excitations which can obscure the sample’s true dielectric response, even in cases where the relevant structures are far outside of the spatial region probed by the AFM tip.more » « less
- 
            The electrical properties of graphene on dielectric substrates, such as silicon carbide (SiC), have received much attention due to their interesting applications. This work presents a method to grow graphene on a 6H-SiC substrate at a pressure of 35 Torr by using the hot filament chemical vapor deposition (HFCVD) technique. The graphene deposition was conducted in an atmosphere of methane and hydrogen at a temperature of 950 °C. The graphene films were analyzed using Raman spectroscopy, scanning electron microscopy, atomic force microscopy, energy dispersive X-ray, and X-ray photoelectron spectroscopy. Raman mapping and AFM measurements indicated that few-layer and multilayer graphene were deposited from the external carbon source depending on the growth parameter conditions. The compositional analysis confirmed the presence of graphene deposition on SiC substrates and the absence of any metal involved in the growth process.more » « less
- 
            Abstract The coupling of terahertz optical techniques to scattering-type scanning near-field microscopy (s-SNOM) has recently emerged as a valuable new paradigm for probing the properties of semiconductors and other materials on the nanoscale. Researchers have demonstrated a family of related techniques, including terahertz nanoscopy (elastic scattering, based on linear optics), time-resolved methods, and nanoscale terahertz emission spectroscopy. However, as with nearly all examples of s-SNOM since the technique’s inception in the mid-1990s, the wavelength of the optical source coupled to the near-field tip is long, usually at energies of 2.5 eV or less. Challenges in coupling of shorter wavelengths (i.e., blue light) to the nanotip has greatly inhibited the study of nanoscale phenomena in wide bandgap materials such as Si and GaN. Here, we describe the first experimental demonstration of s-SNOM using blue light. With femtosecond pulses at 410 nm, we generate terahertz pulses directly from bulk silicon, spatially resolved with nanoscale resolution, and show that these signals provide spectroscopic information that cannot be obtained using near-infrared excitation. We develop a new theoretical framework to account for this nonlinear interaction, which enables accurate extraction of material parameters. This work establishes a new realm of possibilities for the study of technologically relevant wide-bandgap materials using s-SNOM methods.more » « less
- 
            Probe is the core component of an optical scanning probe microscope such as scattering-type scanning near-field optical microscopy (s-SNOM). Its ability of concentrating and localizing light determines the detection sensitivity of nanoscale spectroscopy. In this paper, a novel plasmonic probe made of a gradient permittivity material (GPM) is proposed and its nanofocusing performance is studied theoretically and numerically. Compared with conventional plasmonic probes, this probe has at least two outstanding advantages: First, it doesn't need extra structures for surface plasmon polaritons (SPPs) excitation or localized surface plasmon resonance (LSPR), simplifying the probe system; Second, the inherent nanofocusing effects of the conical probe structure can be further reinforced dramatically by designing the distribution of the probe permittivity. As a result, the strong near-field enhancement and localization at the tip apex improve both spectral sensitivity and spatial resolution of a s-SNOM. We also numerically demonstrate that a GPM probe as well as its enhanced nanofocusing effects can be realized by conventional semiconductor materials with designed doping distributions. The proposed novel plasmonic probe promises to facilitate subsequent nanoscale spectroscopy applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    