skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring middle school teachers’ views about problem-posing tasks
It is important to understand teachers’ views about problem-posing (PP) tasks and the prompts that are used in such tasks to engage students in posing problems. In this study, we explored 15 middle school mathematics teachers’ views about PP prompts. We found that the teachers’ views were motivated by their curricular reasoning around engaging and challenging their students and addressed five main prompt characteristics: openness, promoting critical thinking, providing scaffolding, more or less intimidating, and allowing for differentiation. The teachers’ reasoning suggested they attended to how PP can create opportunities for sensemaking, deepen students’ learning of mathematics, and foster students’ identities as creative doers of mathematics. How- ever, they did not address connecting students’ life experiences to mathematics, another key goal of teaching mathematics through PP. The findings have implications for curriculum developers and researchers regarding the design of PP tasks and the implementation of such tasks in the classroom, and they suggest several directions for future research.  more » « less
Award ID(s):
2101552
PAR ID:
10507734
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier Inc
Date Published:
Journal Name:
The Journal of Mathematical Behavior
Volume:
73
Issue:
C
ISSN:
0732-3123
Page Range / eLocation ID:
101140
Subject(s) / Keyword(s):
Problem-posing Problem-posing prompts P-PBL Teachers’ curricular reasoning Middle school
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Drijvers, P; Csapodi, C; Palmér, H; Gosztonyi, K; Kónya, E (Ed.)
    This study is part of a larger project exploring how beginning teachers learn to teach mathematics via reasoning and proving. The study followed two beginning secondary mathematics teachers for two years. First, as students in a capstone course in which they learned to integrate reasoning and proving into teaching mathematics, and then as full-time interns in secondary schools. The culminating part of the internship was an action research / inquiry project devoted to reasoning and proving. This exploratory multi-case study examined how conducting such an inquiry project affected interns’ discourses and practices for teaching mathematics via reasoning and proving. The results show that both beginning teachers successfully recontextualized what they learned in the capstone course in their inquiry projects. Yet, there were substantial differences between the two interns, which affected their conclusions about continuing integrating reasoning and proving in their classrooms. 
    more » « less
  2. Posing questions is a direct way for teachers to push students to verbalize justifications and make connections among ideas—a crucial component of giving students with learning disabilities access to high levels of mathematical reasoning—but this skill is difficult to learn. We recruited four pre-service special education teachers to provide 1-1 algebra tutoring to students with learning disabilities while receiving instruction related to posing mathematics questions and supporting students’ reasoning. The pre-service teachers increased their frequency of questions overall and of questions that probed students’ thinking or explored mathematical relationships. Students gave correct and complete responses to these more complex questions approximately half of the time; however, pre-service teachers most often reduced the complexity of their questions when students gave incomplete responses. The findings of this study illustrate the potential for pre-service special education teachers to develop questioning routines that engage students with learning disabilities in mathematical reasoning while scaffolding their progress toward new understanding. 
    more » « less
  3. Abstract It is important to understand how students reason in K-12 integrated STEM settings to better prepare teachers to engage their students in integrated STEM tasks. To understand the reasoning that occurs in these settings, we used the lens of collective argumentation, specifically attending to the types of warrants elementary students and their teachers provided and accepted in integrated STEM contexts and how teachers supported students in providing these warrants. We watched 103 h of classroom instruction from 10 elementary school teachers and analyzed warrants that occurred in arguments in mathematics, coding, and integrated contexts to develop a typology of warrants contributed in mathematics and coding arguments. We found that these students made their warrants explicit the majority of the time, regardless of the teacher’s presence or absence. When teachers were present, they supported argumentation in various ways; however, they offered less support in integrated contexts. Additionally, we found students relied more on visual observations in coding contexts than in mathematics or integrated contexts, where they often provided warrants based on procedures required to accomplish a task. These findings have implications for improving integrated STEM instruction through engaging students in argumentation. 
    more » « less
  4. This study used three pairs of problem-posing tasks to examine the impact of different prompts on students’ problem posing. Two kinds of prompts were involved. The first asked students to pose 2–3 different mathematical problems without specifying other requirements for the problems, whereas the second kind of prompt did specify additional requirements. A total of 2124 students’ responses were analyzed to examine the impact of the prompts along multiple dimensions. In response to problem-posing prompts with more specific requirements, students tended to engage in more in-depth mathematical thinking and posed much more linguistically and semantically complex problems with more relationships or steps required to solve them. The findings from this study not only contribute to our understanding of problem-posing processes but also have direct implications for teaching mathematics through problem posing. 
    more » « less
  5. Christiansen, I (Ed.)
    Despite the importance of reasoning and proving in mathematics and mathematics education, little is known about how future teachers become proficient in integrating reasoning and proving in their teaching practices. In this article, we characterize this aspect of prospective secondary mathematics teachers’ (PSTs’) professional learning by drawing upon the commognitive theory. We offer a triple-layer conceptualization of (student)learning,teaching, andlearning to teachmathematics via reasoning and proving by focusing on the discourses students participate in (learning), the opportunities for reasoning and proving afforded to them (teaching), and how PSTs design and enrich such opportunities (learning to teach). We explore PSTs’ pedagogical discourse anchored in the lesson plans they designed, enacted, and modified as part of their participation in a university-based course:Mathematical Reasoning and Proving for Secondary Teachers. We identified four types of discursive modifications: structural, mathematical, reasoning-based, and logic-based. We describe how the potential opportunities for reasoning and proving afforded to students by these lesson plans changed as a result of these modifications. Based on our triple-layered conceptualization we illustrate how the lesson modifications and the resulting alterations to student learning opportunities can be used to characterize PSTs’ professional learning. We discuss the affordances of theorizing teacher practices with the same theoretical lens (grounded in commognition) to inquire student learning and teacher learning, and how lesson plans, as a proxy of teaching practices, can be used as a methodological tool to better understand PSTs’ professional learning. 
    more » « less