Intense precipitation events (IPE; 99th percentile) in the southeastern United States from 1950 to 2016 were analysed temporally, spatially, and synoptically. The study area was partitioned into latitudinal and physiographic regions to identify subregions that experienced significant changes in IPE frequency or intensity. Furthermore, the spatial synoptic classification (SSC) was used to ascertain what surface weather types are associated with IPEs. Additionally, in conjunction with the SSC, surface forcing mechanisms for the 30 most extreme subregional IPEs were studied to uncover the surface synoptic conditions responsible for IPEs. Results revealed that IPEs increased in frequency and intensity on an annual basis for the southeastern United States. Seasonal results indicated that IPE frequency only increased in the fall. Subregional results reveal that latitudinally, IPEs became more common in the northern latitudes of the study area, while physiographically, significant increases in IPE frequency were most pronounced in areas inland from the Atlantic Coastal Plain. An increase in the annual number of IPEs associated with moist tropical (MT) days was identified across the study area, but was more prevalent in the central and north central latitudinal regions, and areas inland from the Atlantic Coastal Plain outside of the Appalachian Mountains. This MT increase was possibly caused by more common northwards and inland intrusion of these types of IPEs. While moist moderate (MM) and transitional (TR) days were most commonly associated with IPEs, these weather types did not have significant trends. The surface forcing mechanisms most commonly associated with the strongest IPEs were tropical events, followed by stationary fronts and concentric low‐pressure systems.
more »
« less
A maximum entropy approach to defining geographic bounds on growth and yield model usage
Growth and yield models are essential tools in modern forestry, especially for intensively managed loblolly pine plantations in the southeastern United States. While model developers often have a good idea of where these models should be used with respect to geographic location, determining geographic bounds for model usage can be daunting. Such bounds provide suitable areas where model predictions are likely to behave as expected or identify areas where models may do a poor job of characterizing the growth of a resource. In this research, we adapted a niche model methodology, commonly used to identify suitable spots for species occurrence (maximum entropy), to identify areas for using growth and yield models built from plots established in the Lower Coastal Plain and Piedmont/Upper Coastal Plain in the southeastern United States. The results from this analysis identify areas with similar climatic envelopes and soil properties to the areas where data was collected to fit these growth and yield models. These areas show notable overlap with the areas prescribed for use by the evaluated growth and yield models and support practitioners use of these models throughout these regions. Furthermore, this methodology can be applied to different forest models built using large regional extents as long as climatic and soil values are available for each site.
more »
« less
- Award ID(s):
- 1916720
- PAR ID:
- 10507735
- Publisher / Repository:
- Frontiers in Forests and Global Change
- Date Published:
- Journal Name:
- Frontiers in Forests and Global Change
- Volume:
- 6
- ISSN:
- 2624-893X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Mid-rotation silvicultural treatments (MRT) are commonly applied to loblolly pine (Pinus taeda L.) plantations in the southeastern United States to improve pine productivity. Competing vegetation is often present in operational plantations and limits site resource availability. The benefits of MRT for pine productivity are well known, but competing vegetation growth has not been extensively studied. Pine and competing vegetation growth within two regions of the southeastern United States was monitored for 8 years following a one-time post-thin application of either fertilization (224 kg ha-1 of nitrogen plus 28 kg ha-1 phosphorus), chemical herbicide (0.8 oz glyphosate and 0.8 oz triclopyr L-1 of water) or their combination. Fertilization significantly increased pine volume growth in the Lower Coastal Plain (LCP, 2.67-4.01 m3ha-1yr-1) and the Upper Coastal Plain/ Piedmont (UCPIE, 0.20-3.72 m3ha-1yr-1). Chemical herbicide application in both the LCP (0.34-4.87 m3 ha-1yr-1) and UCPIE (0.89-1.97 m3 ha-1yr-1) also significantly increased pine volume. Chemical herbicide application, individually and combined, did not result in significant decreases in herbaceous vegetation, but reduced woody vegetation by up to -2.40 m3 ha-1yr-1 in the LCP and -5.67 m3 ha-1yr-1 in the UCPIE. Consequently, we suggest that competing vegetation response should be considered within site-specific management plans aimed at maximizing pine productivity.more » « less
-
This study examines the geographic and temporal characteristics of the springtime transition to the summer precipitation regime of isolated convection in the southeastern (SE) United States during 2009–12, using a high-resolution surface radar-based precipitation dataset. Isolated convection refers herein to isolated elements or small clusters of precipitation in radar imagery less than 100 km in horizontal dimension. Though the SE United States does not have a monsoon climate, it is useful to apply the established framework of monsoon onset to study the timing and regional variation of the onset of the summer isolated convection regime. Overall, isolated convection rain onset in the SE U.S. domain occurs in late May. Onset begins in south Florida in mid-April, continuing nearly simultaneously across the southeastern coastal plain in early to mid-May. In the northern domain, from Virginia to the Ohio Valley, onset generally occurs much later (mid-June to early July) with more variable onset timing. The sharpness of onset timing is most evident in the coastal plain and Florida. Results suggest the hypothesis, to be examined in a forthcoming study, that the timing of isolated convection onset in the spring may be triggered by specific synoptic-scale events within gradual seasonal changes in atmospheric conditions including extratropical cyclone tracks, convective instability, and the westward migration of the North Atlantic subtropical high. This approach may offer a useful framework for evaluating long-term changes in precipitation for subtropical regimes in an observational and modeling context.more » « less
-
Abstract Primary production is the entry point of energy and carbon into ecosystems, but modeling responses of primary production to “environmental stress” (i.e., reductions of primary production from nonoptimal environmental conditions) remains a key challenge and source of uncertainty in our understanding of Earth's carbon cycle. Here we develop an approach for estimating annual “environmental stress” from tree rings based on the proportion of the optimal diameter growth rate (from species‐specific allometric equations) that is realized in a given year. We assessed climatic, topographic, and soil drivers of environmental stress, as well as their interactions, using both empirical model experiments and linear mixed effect models. Climate gradients and interannual climate variability dominated spatial and temporal variability of environmental stress in much of the western United States, where the tree‐ring environmental stress index was positively correlated with antecedent climatic water balance (precipitation minus potential evapotranspiration) and negatively correlated with temperature and vapor pressure deficit. Excluding topographic and soil information from empirical models reduced their ability to capture spatial gradients in environmental stress, particularly in the eastern United States, where growth was not as strongly limited by climate. Mean climate conditions and topographic characteristics had significant interaction effects with the climatic water balance, indicating an increasing importance of winter moisture for warmer and drier sites and as elevation and topographic wetness index increased. These results suggest that including effects of antecedent climate (particularly in dry regions) and site topographic and soil characteristics could improve parameterization of environmental stress effects in primary production models.more » « less
-
The objective of this research is to determine the fundamental mechanisms that cause loss of topsoil. Claypan soils cover approximately 10 million acres in the United States and are characterized by a highly impermeable layer below the topsoil. This impermeable layer acts as a barrier for infiltrating water which may be increasing the erosion rate and sediment transport of upper soil layers. This increasing topsoil depletion ultimately limits the productive capacity of agronomic fields. This study focuses on the undermining of the topsoil due to the impermeable claypan layer in Southeastern Kansas where the topsoil depth is limited and, in places, the claypan layer is exposed at the surface. Using LiDAR-derived digital elevation maps, the potential areas of critical soil loss and hydrologic flow patterns is determined. Surface soil apparent electrical conductivity (EC) measurements highlight the soil variability throughout the field. Electrical Resistivity Tomography (ERT) surveys is also performed to determine the depth to the claypan layer in low and high crop yield areas. The results indicate that the areas of high EC correlated with high clay content and low crop yield, while areas of low EC correlated with high crop yield. The results also indicate that the claypan layer in the low crop yield area is 1.0 m thick and significantly thins once reaching the high crop yield area. The next phase of this ongoing research is to measure the soil properties between the low and high crop yield areas, measure the movement of water at the claypan interface, and measure sediment transport at the claypan interface.more » « less
An official website of the United States government

