In this paper, we study the generalized subdifferentials and the Riemannian gradient subconsistency that are the basis for non-Lipschitz optimization on embedded submanifolds of [Formula: see text]. We then propose a Riemannian smoothing steepest descent method for non-Lipschitz optimization on complete embedded submanifolds of [Formula: see text]. We prove that any accumulation point of the sequence generated by the Riemannian smoothing steepest descent method is a stationary point associated with the smoothing function employed in the method, which is necessary for the local optimality of the original non-Lipschitz problem. We also prove that any accumulation point of the sequence generated by our method that satisfies the Riemannian gradient subconsistency is a limiting stationary point of the original non-Lipschitz problem. Numerical experiments are conducted to demonstrate the advantages of Riemannian [Formula: see text] [Formula: see text] optimization over Riemannian [Formula: see text] optimization for finding sparse solutions and the effectiveness of the proposed method. Funding: C. Zhang was supported in part by the National Natural Science Foundation of China [Grant 12171027] and the Natural Science Foundation of Beijing [Grant 1202021]. X. Chen was supported in part by the Hong Kong Research Council [Grant PolyU15300219]. S. Ma was supported in part by the National Science Foundation [Grants DMS-2243650 and CCF-2308597], the UC Davis Center for Data Science and Artificial Intelligence Research Innovative Data Science Seed Funding Program, and a startup fund from Rice University. 
                        more » 
                        « less   
                    
                            
                            Nonasymptotic Convergence Rates for the Plug-in Estimation of Risk Measures
                        
                    
    
            Let ρ be a general law-invariant convex risk measure, for instance, the average value at risk, and let X be a financial loss, that is, a real random variable. In practice, either the true distribution μ of X is unknown, or the numerical computation of [Formula: see text] is not possible. In both cases, either relying on historical data or using a Monte Carlo approach, one can resort to an independent and identically distributed sample of μ to approximate [Formula: see text] by the finite sample estimator [Formula: see text] (μNdenotes the empirical measure of μ). In this article, we investigate convergence rates of [Formula: see text] to [Formula: see text]. We provide nonasymptotic convergence rates for both the deviation probability and the expectation of the estimation error. The sharpness of these convergence rates is analyzed. Our framework further allows for hedging, and the convergence rates we obtain depend on neither the dimension of the underlying assets nor the number of options available for trading. Funding: Daniel Bartl is grateful for financial support through the Vienna Science and Technology Fund [Grant MA16-021] and the Austrian Science Fund [Grants ESP-31 and P34743]. Ludovic Tangpi is supported by the National Science Foundation [Grant DMS-2005832] and CAREER award [Grant DMS-2143861]. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2143861
- PAR ID:
- 10507749
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- Mathematics of Operations Research
- ISSN:
- 0364-765X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We study the convergence of divergence-regularized optimal transport as the regularization parameter vanishes. Sharp rates for general divergences including relative entropy or Lpregularization, general transport costs, and multimarginal problems are obtained. A novel methodology using quantization and martingale couplings is suitable for noncompact marginals and achieves, in particular, the sharp leading-order term of entropically regularized 2-Wasserstein distance for marginals with a finite [Formula: see text]-moment. Funding: This work was supported by the Alfred P. Sloan Foundation [Grant FG-2016-6282] and the Division of Mathematical Sciences [Grants DMS-1812661 and DMS-2106056].more » « less
- 
            Consider a queuing system with K parallel queues in which the server for each queue processes jobs at rate n and the total arrival rate to the system is [Formula: see text], where [Formula: see text] and n is large. Interarrival and service times are taken to be independent and exponentially distributed. It is well known that the join-the-shortest-queue (JSQ) policy has many desirable load-balancing properties. In particular, in comparison with uniformly at random routing, the time asymptotic total queue-length of a JSQ system, in the heavy traffic limit, is reduced by a factor of K. However, this decrease in total queue-length comes at the price of a high communication cost of order [Formula: see text] because at each arrival instant, the state of the full K-dimensional system needs to be queried. In view of this, it is of interest to study alternative routing policies that have lower communication costs and yet have similar load-balancing properties as JSQ. In this work, we study a family of such rank-based routing policies, which we will call Marginal Size Bias Load-Balancing policies, in which [Formula: see text] of the incoming jobs are routed to servers with probabilities depending on their ranked queue length and the remaining jobs are routed uniformly at random. A particular case of such routing schemes, referred to as the marginal JSQ (MJSQ) policy, is one in which all the [Formula: see text] jobs are routed using the JSQ policy. Our first result provides a heavy traffic approximation theorem for such queuing systems in terms of reflected diffusions in the positive orthant [Formula: see text]. It turns out that, unlike the JSQ system, where, due to a state space collapse, the heavy traffic limit is characterized by a one-dimensional reflected Brownian motion, in the setting of MJSQ (and for the more general rank-based routing schemes), there is no state space collapse, and one obtains a novel diffusion limit which is the constrained analogue of the well-studied Atlas model (and other rank-based diffusions) that arise from certain problems in mathematical finance. Next, we prove an interchange of limits ([Formula: see text] and [Formula: see text]) result which shows that, under conditions, the steady state of the queuing system is well approximated by that of the limiting diffusion. It turns out that the latter steady state can be given explicitly in terms of product laws of Exponential random variables. Using these explicit formulae, and the interchange of limits result, we compute the time asymptotic total queue-length in the heavy traffic limit for the MJSQ system. We find the striking result that, although in going from JSQ to MJSQ, the communication cost is reduced by a factor of [Formula: see text], the steady-state heavy traffic total queue-length increases by at most a constant factor (independent of n, K) which can be made arbitrarily close to one by increasing a MJSQ parameter. We also study the case where the system is overloaded—namely, [Formula: see text]. For this case, we show that although the K-dimensional MJSQ system is unstable, unlike the setting of random routing, the system has certain desirable and quantifiable load-balancing properties. In particular, by establishing a suitable interchange of limits result, we show that the steady-state difference between the maximum and the minimum queue lengths stays bounded in probability (in the heavy traffic parameter n). Funding: Financial support from the National Science Foundation [RTG Award DMS-2134107] is gratefully acknowledged. S. Banerjee received financial support from the National Science Foundation [NSF-CAREER Award DMS-2141621]. A. Budhiraja received financial support from the National Science Foundation [Grant DMS-2152577].more » « less
- 
            This paper proposes and develops a new Newton-type algorithm to solve subdifferential inclusions defined by subgradients of extended real-valued prox-regular functions. The proposed algorithm is formulated in terms of the second order subdifferential of such functions that enjoy extensive calculus rules and can be efficiently computed for broad classes of extended real-valued functions. Based on this and on the metric regularity and subregularity properties of subgradient mappings, we establish verifiable conditions ensuring the well-posedness of the proposed algorithm and its local superlinear convergence. The obtained results are also new for the class of equations defined by continuously differentiable functions with Lipschitzian gradients ([Formula: see text] functions), which is the underlying case of our consideration. The developed algorithms for prox-regular functions and their extension to a structured class of composite functions are formulated in terms of proximal mappings and forward–backward envelopes. Besides numerous illustrative examples and comparison with known algorithms for [Formula: see text] functions and generalized equations, the paper presents applications of the proposed algorithms to regularized least square problems arising in statistics, machine learning, and related disciplines. Funding: Research of P. D. Khanh is funded by Ho Chi Minh City University of Education Foundation for Science and Technology [Grant CS.2022.19.20TD]. Research of B. Mordukhovich and V. T. Phat was partly supported by the U.S. National Science Foundation [Grants DMS-1808978 and DMS-2204519]. The research of B. Mordukhovich was also supported by the Air Force Office of Scientific Research [Grant 15RT0462] and the Australian Research Council under Discovery Project DP-190100555. This work was supported by the Air Force Office of Scientific Research [Grant 15RT0462].more » « less
- 
            Join-the-shortest queue (JSQ) is a classical benchmark for the performance of parallel-server queueing systems because of its strong optimality properties. Recently, there has been significant progress in understanding its large-system asymptotic behavior. In this paper, we analyze the JSQ policy in the super-Halfin-Whitt scaling window when load per server [Formula: see text] scales with the system size N as [Formula: see text] for [Formula: see text] and [Formula: see text]. We establish that the centered and scaled total queue length process converges to a certain Bessel process with negative drift, and the associated (centered and scaled) steady-state total queue length, indexed by N, converges to a [Formula: see text] distribution. The limit laws are universal in the sense that they do not depend on the value of [Formula: see text] and exhibit fundamentally different behavior from both the Halfin–Whitt regime ([Formula: see text]) and the nondegenerate slowdown (NDS) regime ([Formula: see text]). Funding: This work was supported by the National Science Foundation to S. Banerjee [Grants CAREER DMS-2141621 and RTG DMS-2134107] and D. Mukherjee and Z. Zhao [Grants CIF-2113027 and CPS-2240982].more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    