skip to main content


This content will become publicly available on December 14, 2024

Title: QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Supervised machine learning approaches have been increasingly used in accelerating electronic structure prediction as surrogates of first-principle computational methods, such as density functional theory (DFT). While numerous quantum chemistry datasets focus on chemical properties and atomic forces, the ability to achieve accurate and efficient prediction of the Hamiltonian matrix is highly desired, as it is the most important and fundamental physical quantity that determines the quantum states of physical systems and chemical properties. In this work, we generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 2,399 molecular dynamics trajectories and 130,831 stable molecular geometries, based on the QM9 dataset. By designing benchmark tasks with various molecules, we show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules. Both the QH9 dataset and the baseline models are provided to the community through an open-source benchmark, which can be highly valuable for developing machine learning methods and accelerating molecular and materials design for scientific and technological applications. Our benchmark is publicly available at \url{https://github.com/divelab/AIRS/tree/main/OpenDFT/QHBench}.  more » « less
Award ID(s):
2103842
NSF-PAR ID:
10507817
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
NeurIPS
Date Published:
Journal Name:
Conference on Neural Information Processing Systems (NeurIPS)
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Supervised machine learning approaches have been increasingly used in accelerating electronic structure prediction as surrogates of first-principle computational methods, such as density functional theory (DFT). While numerous quantum chemistry datasets focus on chemical properties and atomic forces, the ability to achieve accurate and efficient prediction of the Hamiltonian matrix is highly desired, as it is the most important and fundamental physical quantity that determines the quantum states of physical systems and chemical properties. In this work, we generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 2,399 molecular dynamics trajectories and 130,831 stable molecular geometries, based on the QM9 dataset. By designing benchmark tasks with various molecules, we show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules. Both the QH9 dataset and the baseline models are provided to the community through an open-source benchmark, which can be highly valuable for developing machine learning methods and accelerating molecular and materials design for scientific and technological applications. 
    more » « less
  2. Supervised machine learning approaches have been increasingly used in accelerating electronic structure prediction as surrogates of first-principle computational methods, such as density functional theory (DFT). While numerous quantum chemistry datasets focus on chemical properties and atomic forces, the ability to achieve accurate and efficient prediction of the Hamiltonian matrix is highly desired, as it is the most important and fundamental physical quantity that determines the quantum states of physical systems and chemical properties. In this work, we generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 2,399 molecular dynamics trajectories and 130,831 stable molecular geometries, based on the QM9 dataset. By designing benchmark tasks with various molecules, we show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules. Both the QH9 dataset and the baseline models are provided to the community through an open-source benchmark, which can be highly valuable for developing machine learning methods and accelerating molecular and materials design for scientific and technological applications. Our benchmark is publicly available at \url{https://github.com/divelab/AIRS/tree/main/OpenDFT/QHBench}. 
    more » « less
  3. Accelerating the development of π-conjugated molecules for applications such as energy generation and storage, catalysis, sensing, pharmaceuticals, and (semi)conducting technologies requires rapid and accurate evaluation of the electronic, redox, or optical properties. While high-throughput computational screening has proven to be a tremendous aid in this regard, machine learning (ML) and other data-driven methods can further enable orders of magnitude reduction in time while at the same time providing dramatic increases in the chemical space that is explored. However, the lack of benchmark datasets containing the electronic, redox, and optical properties that characterize the diverse, known chemical space of organic π-conjugated molecules limits ML model development. Here, we present a curated dataset containing 25k molecules with density functional theory (DFT) and time-dependent DFT (TDDFT) evaluated properties that include frontier molecular orbitals, ionization energies, relaxation energies, and low-lying optical excitation energies. Using the dataset, we train a hierarchy of ML models, ranging from classical models such as ridge regression to sophisticated graph neural networks, with molecular SMILES representation as input. We observe that graph neural networks augmented with contextual information allow for significantly better predictions across a wide array of properties. Our best-performing models also provide an uncertainty quantification for the predictions. To democratize access to the data and trained models, an interactive web platform has been developed and deployed. 
    more » « less
  4. Abstract Motivation

    Properties of molecules are indicative of their functions and thus are useful in many applications. With the advances of deep-learning methods, computational approaches for predicting molecular properties are gaining increasing momentum. However, there lacks customized and advanced methods and comprehensive tools for this task currently.

    Results

    Here, we develop a suite of comprehensive machine-learning methods and tools spanning different computational models, molecular representations and loss functions for molecular property prediction and drug discovery. Specifically, we represent molecules as both graphs and sequences. Built on these representations, we develop novel deep models for learning from molecular graphs and sequences. In order to learn effectively from highly imbalanced datasets, we develop advanced loss functions that optimize areas under precision–recall curves (PRCs) and receiver operating characteristic (ROC) curves. Altogether, our work not only serves as a comprehensive tool, but also contributes toward developing novel and advanced graph and sequence-learning methodologies. Results on both online and offline antibiotics discovery and molecular property prediction tasks show that our methods achieve consistent improvements over prior methods. In particular, our methods achieve #1 ranking in terms of both ROC-AUC (area under curve) and PRC-AUC on the AI Cures open challenge for drug discovery related to COVID-19.

    Availability and implementation

    Our source code is released as part of the MoleculeX library (https://github.com/divelab/MoleculeX) under AdvProp.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. null (Ed.)
    Study of the permeability of small organic molecules across lipid membranes plays a significant role in designing potential drugs in the field of drug discovery. Approaches to design promising drug molecules have gone through many stages, from experiment-based trail-and-error approaches, to the well-established avenue of the quantitative structure–activity relationship, and currently to the stage guided by machine learning (ML) and artificial intelligence techniques. In this work, we present a study of the permeability of small drug-like molecules across lipid membranes by two types of ML models, namely the least absolute shrinkage and selection operator (LASSO) and deep neural network (DNN) models. Molecular descriptors and fingerprints are used for featurization of organic molecules. Using molecular descriptors, the LASSO model uncovers that the electro-topological, electrostatic, polarizability, and hydrophobicity/hydrophilicity properties are the most important physical properties to determine the membrane permeability of small drug-like molecules. Additionally, with molecular fingerprints, the LASSO model suggests that certain chemical substructures can significantly affect the permeability of organic molecules, which closely connects to the identified main physical properties. Moreover, the DNN model using molecular fingerprints can help develop a more accurate mapping between molecular structures and their membrane permeability than LASSO models. Our results provide deep understanding of drug–membrane interactions and useful guidance for the inverse molecular design of drug-like molecules. Last but not least, while the current focus is on the permeability of drug-like molecules, the methodology of this work is general and can be applied for other complex physical chemistry problems to gain molecular insights. 
    more » « less