Abstract The electronic, optical, and solid state properties of a series of monoradicals, anions and cations obtained from starting neutral diradicals have been studied. Diradicals based ons‐indacene and indenoacenes, with benzothiophenes fused and in different orientations, feature a varying degree of diradical character in the neutral state, which is here related with the properties of the radical redox forms. The analysis of their optical features in the polymethine monoradicals has been carried out in the framework of the molecular orbital and valence bond theories. Electronic UV‐Vis‐NIR absorption, X‐ray solid‐state diffraction and quantum chemical calculations have been carried out. Studies of the different positive‐/negative‐charged species, both residing in the same skeletalπ‐conjugated backbone, are rare for organic molecules. The key factor for the dual stabilization is the presence of the starting diradical character that enables to indistinctively accommodate a pseudo‐hole and a pseudo‐electron defect with certainly small reorganization energies for ambipolar charge transport.
more »
« less
Electronic, redox, and optical property prediction of organic π-conjugated molecules through a hierarchy of machine learning approaches
Accelerating the development of π-conjugated molecules for applications such as energy generation and storage, catalysis, sensing, pharmaceuticals, and (semi)conducting technologies requires rapid and accurate evaluation of the electronic, redox, or optical properties. While high-throughput computational screening has proven to be a tremendous aid in this regard, machine learning (ML) and other data-driven methods can further enable orders of magnitude reduction in time while at the same time providing dramatic increases in the chemical space that is explored. However, the lack of benchmark datasets containing the electronic, redox, and optical properties that characterize the diverse, known chemical space of organic π-conjugated molecules limits ML model development. Here, we present a curated dataset containing 25k molecules with density functional theory (DFT) and time-dependent DFT (TDDFT) evaluated properties that include frontier molecular orbitals, ionization energies, relaxation energies, and low-lying optical excitation energies. Using the dataset, we train a hierarchy of ML models, ranging from classical models such as ridge regression to sophisticated graph neural networks, with molecular SMILES representation as input. We observe that graph neural networks augmented with contextual information allow for significantly better predictions across a wide array of properties. Our best-performing models also provide an uncertainty quantification for the predictions. To democratize access to the data and trained models, an interactive web platform has been developed and deployed.
more »
« less
- Award ID(s):
- 2019574
- PAR ID:
- 10416212
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 203 to 213
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Biocompatible molecules with electronic functionality provide a promising substrate for biocompatible electronic devices and electronic interfacing with biological systems. Synthetic oligopeptides composed of an aromatic π-core flanked by oligopeptide wings are a class of molecules that can self-assemble in aqueous environments into supramolecular nanoaggregates with emergent optical and electronic activity. We present an integrated computational–experimental pipeline employing all-atom molecular dynamics simulations and experimental UV-visible spectroscopy within an active learning workflow using deep representational learning and multi-objective and multi-fidelity Bayesian optimization to design π-conjugated peptides programmed to self-assemble into elongated pseudo-1D nanoaggregates with a high degree of H-type co-facial stacking of the π-cores. We consider as our design space the 694 982 unique π-conjugated peptides comprising a quaterthiophene π-core flanked by symmetric oligopeptide wings up to five amino acids in length. After sampling only 1181 molecules (∼0.17% of the design space) by computation and 28 (∼0.004%) by experiment, we identify and experimentally validate a diversity of previously unknown high-performing molecules and extract interpretable design rules linking peptide sequence to emergent supramolecular structure and properties.more » « less
-
Discovering novel molecules with targeted properties remains a formidable challenge in materials science, often likened to finding a needle in a haystack. Traditional experimental approaches are slow, costly, and inefficient. In this study, we present an inverse design framework based on a molecular graph conditional variational autoencoder (CVAE) that enables the generation of new molecules with user-specified optical properties, particularly molar extinction coefficient ($$\varepsilon$$). Our model encodes molecular graphs, derived from SMILES strings, into a structured latent space, and then decodes them into valid molecular structures conditioned on a target $$\varepsilon$$ value. Trained on a curated dataset of known molecules with corresponding extinction coefficients, the CVAE learns to generate chemically valid structures, as verified by RDKit. Subsequent Density Functional Theory (DFT) simulations confirm that many of the generated molecules exhibit the electronic structures similar to those molecules with desired $$\varepsilon$$ values. We have also verified the $$\varepsilon$$ values of the generated molecules using a graph neural network (GNN) and the synthesizability of those molecules using an open-source module named ASKCOS. This approach demonstrates the potential of CVAEs to accelerate molecular discovery by enabling user-guided, property-driven molecule generation -- offering a scalable, data-driven alternative to traditional trial-and-error synthesis.more » « less
-
Nonadiabatic molecular dynamics (NA-MD) is a powerful tool to model far-from-equilibrium processes, such as photochemical reactions and charge transport. NA-MD application to condensed phase has drawn tremendous attention recently for development of next-generation energy and optoelectronic materials. Studies of condensed matter allow one to employ efficient computational tools, such as density functional theory (DFT) and classical path approximation (CPA). Still, system size and simulation timescale are strongly limited by costly ab initio calculations of electronic energies, forces, and NA couplings. We resolve the limitations by developing a fully machine learning (ML) approach in which all the above properties are obtained using neural networks based on local descriptors. The ML models correlate the target properties for NA-MD, implemented with DFT and CPA, directly to the system structure. Trained on small systems, the neural networks are applied to large systems and long timescales, extending NA-MD capabilities by orders of magnitude. We demonstrate the approach with dependence of charge trapping and recombination on defect concentration in MoS2. Defects provide the main mechanism of charge losses, resulting in performance degradation. Charge trapping slows with decreasing defect concentration; however, recombination exhibits complex dependence, conditional on whether it occurs between free or trapped charges, and relative concentrations of carriers and defects. Delocalized shallow traps can become localized with increasing temperature, changing trapping and recombination behavior. Completely based on ML, the approach bridges the gap between theoretical models and realistic experimental conditions and enables NA-MD on thousand-atom systems and many nanoseconds.more » « less
-
Machine learning (ML) offers an attractive method for making predictions about molecular systems while circumventing the need to run expensive electronic structure calculations. Once trained on ab initio data, the promise of ML is to deliver accurate predictions of molecular properties that were previously computationally infeasible. In this work, we develop and train a graph neural network model to correct the basis set incompleteness error (BSIE) between a small and large basis set at the RHF and B3LYP levels of theory. Our results show that, when compared to fitting to the total potential, an ML model fitted to correct the BSIE is better at generalizing to systems not seen during training. We test this ability by training on single molecules while evaluating on molecular complexes. We also show that ensemble models yield better behaved potentials in situations where the training data is insufficient. However, even when only fitting to the BSIE, acceptable performance is only achieved when the training data sufficiently resemble the systems one wants to make predictions on. The test error of the final model trained to predict the difference between the cc-pVDZ and cc-pV5Z potential is 0.184 kcal/mol for the B3LYP density functional, and the ensemble model accurately reproduces the large basis set interaction energy curves on the S66x8 dataset.more » « less
An official website of the United States government

